文档详情

江苏省镇江市2020年中考数学试卷解析版

平**
实名认证
店铺
DOC
426.50KB
约29页
文档ID:163252516
江苏省镇江市2020年中考数学试卷解析版_第1页
1/29

2020年江苏省镇江市中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列计算正确的是(  )A.a3+a3=a6 B.(a3)2=a6 C.a6a2=a3 D.(ab)3=ab32.如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是(  )A. B. C. D.3.一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是(  )A.第一 B.第二 C.第三 D.第四4.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106,则∠CAB等于(  )A.10 B.14 C.16 D.265.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于(  )A. B.4 C.﹣ D.﹣6.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于(  )A. B. C. D.二、填空题(本大题共12小题,每小题2分,共24分)7.的倒数等于   .8.使有意义的x的取值范围是   .9.分解因式:9x2﹣1=   .10.2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为   .11.一元二次方程x2﹣2x=0的两根分别为   .12.一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于   .13.圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于   .14.点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转   后能与原来的图案互相重合.15.根据数值转换机的示意图,输出的值为   .16.如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为   .17.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为   .18.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于   .三、解答题(本大题共10小题,共78分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(1)计算:4sin60﹣+(﹣1)0;(2)化简(x+1)(1+).20.(1)解方程:=+1;(2)解不等式组:21.如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78,求∠BAC的度数.22.教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:平均每天的睡眠时间分组5≤t<66≤t<77≤t<88≤t<99小时及以上频数15m24n该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.23.智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“”有刚毅的含义,符号“”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有   种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.24.如图,点E与树AB的根部点A、建筑物CD的底部点C在一条直线上,AC=10m.小明站在点E处观测树顶B的仰角为30,他从点E出发沿EC方向前进6m到点G时,观测树顶B的仰角为45,此时恰好看不到建筑物CD的顶部D(H、B、D三点在一条直线上).已知小明的眼睛离地面1.6m,求建筑物CD的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73.)25.如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣的图象交于点A(n,2)和点B.(1)n=   ,k=   ;(2)点C在y轴正半轴上.∠ACB=90,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.26.如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.27.【算一算】如图①,点A、B、C在数轴上,B为AC的中点,点A表示﹣3,点B表示1,则点C表示的数为   ,AC长等于   ;【找一找】如图②,点M、N、P、Q中的一点是数轴的原点,点A、B分别表示实数﹣1、+1,Q是AB的中点,则点  是这个数轴的原点;【画一画】如图③,点A、B分别表示实数c﹣n、c+n,在这个数轴上作出表示实数n的点E(要求:尺规作图,不写作法,保留作图痕迹);【用一用】学校设置了若干个测温通道,学生进校都应测量体温,已知每个测温通道每分钟可检测a个学生.凌老师提出了这样的问题:假设现在校门口有m个学生,每分钟又有b个学生到达校门口.如果开放3个通道,那么用4分钟可使校门口的学生全部进校;如果开放4个通道,那么用2分钟可使校门口的学生全部进校.在这些条件下,a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴,如图④,他将4分钟内需要进校的人数m+4b记作+(m+4b),用点A表示;将2分钟内由4个开放通道检测后进校的人数,即校门口减少的人数8a记作﹣8a,用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G,并写出+(m+2b)的实际意义;②写出a、m的数量关系:   .28.如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.(1)当a=﹣1时,求点N的坐标及的值;(2)随着a的变化,的值是否发生变化?请说明理由;(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式. 2020年江苏省镇江市中考数学试卷参考答案与试题解析一.选择题(共6小题)1.下列计算正确的是(  )A.a3+a3=a6 B.(a3)2=a6 C.a6a2=a3 D.(ab)3=ab3【分析】根据同底数幂的乘除法、幂的乘方的计算法则进行计算即可.【解答】解:a3+a3=2a3,因此选项A不正确;(a3)2=a32=a6,因此选项B正确;a6a2=a6﹣2=m4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确;故选:B.2.如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是(  )A. B. C. D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.3.一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,它的图象不经过的象限是(  )A.第一 B.第二 C.第三 D.第四【分析】根据一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,可以得到k>0,与y轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵一次函数y=kx+3(k≠0)的函数值y随x的增大而增大,∴k>0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限,故选:D.4.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106,则∠CAB等于(  )A.10 B.14 C.16 D.26【分析】连接BD,如图,根据圆周角定理得到∠ADB=90,则可计算出∠BDC=16,然后根据圆周角定理得到∠CAB的度数.【解答】解:连接BD,如图,∵AB是半圆的直径,∴∠ADB=90,∴∠BDC=∠ADC﹣∠ADB=106﹣90=16,∴∠CAB=∠BDC=16.故选:C.5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于(  )A. B.4 C.﹣ D.﹣【分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m﹣n的最大值,本题得以解决.【解答】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,∴a=0,∴n=m2+4,∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m﹣)2﹣,∴当m=时,m﹣n取得最大值,此时m﹣n=﹣,故选:C.6.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于(  )A. B. C. D.【分析】由题意可得四边形ABQP是平行四边形,可得AP=BQ=x,由图象②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,可求BD=7,由折叠的性质可求BC的长,由锐角三角函数可求解.【解答】解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方,且BQ=x=9时,y=2,如图①所示,∴BD=BQ﹣QD=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴BC=CD=BD=,AC⊥BD,∴cosB===,故选:D.二.填空题(共12小题)7.的倒数等于  .【分析】根据倒数的意义求解即可.【解答】解:∵=1,∴的倒数是,故答案为:.8.使有意义的x的取值范围是 x≥2 .【分析】当被开方数x﹣2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x﹣2≥0,解得x≥2.9.分解因式:9x2﹣1= (3x+1)(3x﹣1) .【分析】符合平方差公式的结构特点,利用平方差公式分解即可.【解答】解:9x2﹣1,=(3x)2﹣12。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档