《算法设计与分析课程设计》由会员分享,可在线阅读,更多相关《算法设计与分析课程设计(6页珍藏版)》请在金锄头文库上搜索。
1、算法设计与分析课程设计一、 课程题目零钱问题贪心算法实现二、课程摘要1)题目描述使用贪心算法设计思想设计算法实现找零钱问题。例题13-4 一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。1)在给定钱币面值的前提下,实现找回尽量少硬币的输出方案2)分析算法性能2)贪心算法
2、简述在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特
3、点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。三、课程引言首先,证明找零钱问题的贪婪算法总能产生具有最少硬币数的零钱。证明:(1)找零钱问题的最优解必以一个贪心选择开始,当总金额为N,硬币面值为25,10,5,1时。 设最大容许的硬币面值为m,最优解必包含一个面值为m的硬币: 设A是一个最优解,且A中的第i个硬币面值为f(i)。 当f(1)=m(此处为25),得证; 若f(1)1)之和1时,若jTn,即第n种钱币面值比所兑换零钱数小,因此有。当k为时,C(n,j)达到最小值,有P(T(k0),j)=P(T(),j
4、-T()+1若j=Tn,即用n种钱币兑换零钱,第n种钱币面值与兑换零钱数j相等,此时有C(n,j)=C(n,Tn)=1;若jTn,即第n种钱币面值比所兑换零钱数大,因此兑换零钱只需考虑前n-1种钱币即可,故有C(n,j)=C(n-1,j),且P(T(n-1),j)=0。从以上讨论可知该问题具有重叠子问题性质。(1) 根据分析建立正确的递归关系。答: (2) 分析利用你的想法解决该问题可能会有怎样的时空复杂度。答:算法的时间复杂度主要取决于程序的两个循环,所以算法的时间复杂度为;算法执行过程中引入了一个二维数组,随着输入规模的增大,所需要的空间复杂度为:考虑例1 3 - 4的找零钱问题,假设售货
5、员只有有限的2 5美分, 1 0美分, 5美分和1美分的硬币,给出一种找零钱的贪婪算法。这种方法总能找出具有最少硬币数的零钱吗?证明结论。源代码如下:# include using namespace std;const int C=33; const int M=100; /小孩给的钱数const int twentyfnum=3; /25美分硬币const int tennum=3; /10美分硬币const int fivenum=3; /5美分硬币const int onenum=3; /1美分硬币 const int tnum=twentyfnum+tennum+fivenum+on
6、enum; /硬币的总数量int main()int atnum,i; /数组初始化,数组中的元素由大到小排列int *p=a;for(i=0;itwentyfnum;i+) *p+=25;for(i=0;itennum;i+) *p+=10;for(i=0;ifivenum;i+) *p+=5;for(i=0;ionenum;i+) *p+=1;bool btnum; q,int n,int c);if(findmoney(a,b,tnum,M-C) int c4=0; /存放应找个各面值硬币的数量 bool findmoney(int *p,bool *for(i=0;itnum;i+)i
7、f(bi=true)switch(ai)case 25: c0+;break;case 10: c1+;break;case 5: c2+;break;case 1: c3+;break; cout找钱方案:endl; cout25美分:c0枚,10美分:c1枚,5美分:c2枚,1美分:c0枚endl;else cout零钱不够;system(pause); return 0;bool findmoney(int *p,bool *q,int n,int c) for(int i=0;in;i+) if(pi=c&c!=0) qi=true; c-=pi; if(c=0) break; if(
8、c=0) return true;else return false;在此程序中,程序没有实现输入和输出的模块,但是具有了找零钱问题的贪心算法解决模块,所以需要在此程序的基础上进一步优化,改进后的代码如下:#include using namespace std; void Zl(double num) int leave=0; double a8; leave = (int)(num*10)%10; a1 = leave/5; a0 = (leave%5)/1; a7 = num/50; a6 = (int)num%50)/20; a5 = (int)num%50)%20)/10; a4 =
9、 (int)num%50)%20)%10)/5; a3 = (int)num%50)%20)%10)%5)/2; a2 = (int)num%50)%20)%10)%5)%2)/1; if(a0!=0) cout需要找的0.1元个数为:a0endl; if(a1!=0) cout需要找的0.5元个数为:a1endl; if(a2!=0) cout需要找的1元个数为:a2endl; if(a3!=0) cout需要找的2元个数为:a3endl; if(a4!=0) cout需要找的5元个数为:a4endl; if(a5!=0) cout需要找的10元个数为:a5endl; if(a6!=0) c
10、out需要找的20元个数为:a6endl; if(a7!=0) cout需要找的50元个数为:a7endl; int main() double num; cout请输入你需要找的零钱数:num; Zl(num); coutendl; return 0;2)实验结果比较上一步骤中两个源代码运行结果分别如下:第一个的运行结果第二个运行结果比较上面两个算法,第二个算法在第一个的基础上增加了输入输出功能,方便得到任意数值零钱问题的最优解。五、结论与展望(1)算法实现的复杂度在问题规模很大时可以接受吗?答:可以接受,因为贪心算法有很好的效率,所以当问题复杂度很大时,就不会对算法的运行时间有太大的影响,
11、可以控制在用户可以接受的范围内。(2)如果不用贪心算法方法还能想到其他的解决方式吗?和贪心算法相比会有更好的效率吗?答:对于找硬币问题,有时候动态规划也能解决,前面也有叙述,动态规划求解要比贪心算法求解有效率,所以采用动态规划方法也是一个很好的选择。(3)所选用的数据结构合适吗?答:采用了数组的数据结构,合适,因为该数据结构能够支持对于数组中的元素的随机访问,而且方便查询。(4)该算法都存在哪几类可能出现的情况,你的测试完全覆盖了你所想到的这些情况吗,测试结果如何?答:基本上覆盖了所有可能的测试结果,但不排除结果出现错误的可能。(5)通过实验对贪心算法的理解及总结*贪心算法的特点从全局来看,运用贪心策略解决的问题在程序的运行过程中无回溯过程,后面的每一步都是当前看似最佳的选择,这种选择依赖于已做出的选择,但不依赖于未做出的选择。*贪心算法存在的问题不能保证求得的最后解是最佳的。由于贪心策略总是采用从局部看来是最优的选择,因此并不从整体上加以