《高考数学 真题分类汇编 导数及其应用(含解析).doc》由会员分享,可在线阅读,更多相关《高考数学 真题分类汇编 导数及其应用(含解析).doc(15页珍藏版)》请在金锄头文库上搜索。
1、导数2.(2012山东高考卷T95分)函数的图像大致为【答案】D【解析】函数,为奇函数,当,且时;当,且时;当,;当,.答案应选D。【点评】本题考查了函数的奇偶性的性质特点,结合图象语言,考查了数形结合法的思想,函数图象是考点中重要内容,估计明年还会继续考察。5.( 2011年安徽) 函数在区间0,1上的图像如图所示,则m,n的值可能是(A) (B) y0.51xO0.5 (C) (D) 【答案】B【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当,则,由可知,结合图像可知函数应在递增,在递减,即在取得最大值,由,知a存在.故选B
2、.7.(2011年福建)等于 A1BCD【答案】C8.(2011年福建)对于函数 (其中,),选取的一组值计算和,所得出的正确结果一定不可能是 A4和6B3和1C2和4D1和2【答案】D9.(2011年福建)已知函数,对于曲线上横坐标成等差数列的三个点A,B,C,给出以下判断: ABC一定是钝角三角形ABC可能是直角三角形ABC可能是等腰三角形ABC不可能是等腰三角形其中,正确的判断是ABCD【答案】B10.(2011年福建)若关于x的方程x2mx10有两个不相等的实数根,则实数m的取值范围是A(1,1) B(2,2)C(,2)(2,) D(,1)(1,)【答案】C13.(2011年广东)函数
3、的定义域是 ( ) A B C D【答案】C14.(2011年湖北)已知定义在R上的奇函数和偶函数满足,若,则A. B. C. D. 【答案】B【解析】由条件,即,由此解得,所以,所以选B.15.(2011年湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量(单位:太贝克)与时间(单位:年)满足函数关系:,其中为时铯137的含量,已知时,铯137的含量的变化率是(太贝克/年),则A. 5太贝克 B. 太贝克 C. 太贝克 D. 150太贝克【答案】D【解析】因为,则,解得,所以,那么(太贝克),所以选D.1
4、6.(2011年湖南)曲线在点处的切线的斜率为( )A B C D【答案】B【解析】,所以。17.(2011年湖南)已知函数若有则的取值范围为A B C D【答案】B【解析】由题可知,若有则,即,解得。18.(2011年湖南)由直线与曲线所围成的封闭图形的面积为( )A B1 C D【答案】D【解析】由定积分知识可得,故选D。19.(2011年湖南)设直线与函数的图像分别交于点,则当达到最小时的值为( )A1 B C D【答案】D【解析】由题,不妨令,则,令解得,因时,当时,所以当时,达到最小。即。20.(2011年江西)若,则的定义域为( ) B. C. D.【答案】C 【解析】 21.(2
5、011年江西)曲线在点A(0,1)处的切线斜率为( )A.1 B.2 C. D.【答案】A 【解析】 22.(2011年江西)观察下列各式:则,则的末两位数字为( )A.01 B.43 C.07 D.49【答案】B 【解析】 23.(2011年江西)设,则的解集为A. B. C. D.【答案】C【解析】定义域为,又由,解得或,所以的解集24.(2011年江西)观察下列各式:,则的末四位数字为A. 3125 B. 5625 C. 0625 D.8125【答案】D【解析】观察可知当指数为奇数时,末三位为125;又,即为第1004个指数为奇数的项,应该与第二个指数为奇数的项()末四位相同,的末四位数
6、字为812525.(2012江苏高考卷T54分)函数的定义域为 【答案】 【解析】根据题意得到 ,同时, ,解得,解得,又,所以函数的定义域为: .【点评】本题主要考查函数基本性质、对数函数的单调性和图象的运用.本题容易忽略这个条件,因此,要切实对基本初等函数的图象与性质有清晰的认识,在复习中应引起高度重视.本题属于基本题,难度适中.26.(2012北京高考卷T145分)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:xR,f(x) 0或g(x) 0x(, 4),f(x)g(x) 0则m的取值范围是 答案(-4,-2)解析根据g(x)= 2x -20,可解的x1
7、.由于xR,f(x) 0或g(x) 0成立,导致f(x)在x1时,必须是f(x)0的,因此f(x)的开口必须向下,m0,且此时两个根为x1=2m,x2=-m-3,为保证条件成立,需要,又m0,故结果为-4m0;又x(, 4),f(x)g(x) 0,得x(-,-4)时,g(x)0恒成立,因此就需要在这个范围内f(x)有取正数的可能,即-4应该比x1,x2中的小根大,当m(-1,0)时,-m-3-4,此时不成立;当m=-1时,有两相等根-2,此时不成立;当m(-4,-1)时,2m-4,得m-2.综上可知:m(-4,-2)点评本题考查学生函数的综合能力,涉及到二次函数图像的开口,根的大小,涉及到指数
8、函数的平移的单调性,还涉及到简易逻辑中的“或”,典型的“小题大做”.27.(2012上海高考卷T75分)已知函数(为常数).若在区间上是增函数,则的取值范围是 .【答案】【解析】根据函数看出当时函数增函数,而已知函数在区间上为增函数,所以的取值范围为: .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.28.(2012上海高考卷T95分)已知是奇函数,且,若,则 .【答案】 【解析】因为函数为奇函数,所以 .【点评】本题主要考查函数的奇偶性.在运用此性质解题时
9、要注意:函数为奇函数,所以有这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.29.(2012上海高考卷T2014分)(6+8=14分)已知函数(1)若,求的取值范围;(2)若是以2为周期的偶函数,且当时,有,求函数()的反函数.【答案及解析】,【点评】本题主要考查函数的概念、性质、分段函数等基础知识考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题30.(2012新课标卷T105分) 已知函数;则的图像大致为( )【答案】B【解析】排除法,因为,排除A.,排除C,D,选B.【点评】结合基本初等函数的图象和性质解决,基本初等函数的图象和性质,函数图象的
10、画法以及图象的三种变换。在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。31(2012四川高考卷T55分)函数的图象可能是( )【答案】C【解析】采用排除法. 函数恒过(1,0),选项只有C符合,故选C.【点评】函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.32.(2012四川高考卷T164分)记为不超过实数的最大整数,例如,。设为正整数,数列满足,现有下列命题:当时,数列的前3项依次为5,3,2;对数列都存在正整数,当时总有;当时,;对某个正整数,若,则。其中的真命题有_。(写出所有真命题的编号)答案解析若,根据 当n=1时,x
11、2=3, 同理x3=, 故对.对于可以采用特殊值列举法:当a=1时,x1=1, x2=1, x3=1, xn=1, 此时均对.当a=2时,x1=2, x2=1, x3=1, xn=1, 此时均对当a=3时,x1=3, x2=2, x3=1, x4=2xn=1, 此时均对综上,真命题有 .点评此题难度较大,不容易寻找其解题的切入点,特殊值列举是很有效的解决办法.33.(2012湖南高考卷T85分)已知两条直线 :y=m 和: y=(m0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为A B.
12、 C. D. 【答案】B【解析】在同一坐标系中作出y=m,y=(m0),图像如下图,由= m,得,= ,得.依照题意得.,.【点评】在同一坐标系中作出y=m,y=(m0),图像,结合图像可解得.34. (2012天津高考卷T45分)函数在区间(0,1)内的零点个数是(A)0 (B)1 (C)2 (D)3【答案】B.【解析】以数形结合思想来解答问题.原题可以转化为函数与的图象在区间(0,1)内的交点个数问题.由作图可知在正区间内最多有一个交点,故排除C、D项;当时,当时,因此在区间(0,1)内一定会有一个交点,所以A项错误,正确答案为B.【点评】本题考查了函数的零点分布.考查考生的化归与转化能力.【考场雷区】考生要避免用导数思想来解答试题,这样会进入运算的盲区中,即使能运算出来,也是量大费时,作为小题而言有些大作之味.8.(江苏17)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=cm