智能仪器仪表的网络化体系结构与特点

上传人:j****9 文档编号:45500843 上传时间:2018-06-17 格式:DOC 页数:4 大小:30KB
返回 下载 相关 举报
智能仪器仪表的网络化体系结构与特点_第1页
第1页 / 共4页
智能仪器仪表的网络化体系结构与特点_第2页
第2页 / 共4页
智能仪器仪表的网络化体系结构与特点_第3页
第3页 / 共4页
智能仪器仪表的网络化体系结构与特点_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《智能仪器仪表的网络化体系结构与特点》由会员分享,可在线阅读,更多相关《智能仪器仪表的网络化体系结构与特点(4页珍藏版)》请在金锄头文库上搜索。

1、智能仪器仪表的网络化体系结构与特点智能仪器仪表的网络化体系结构与特点智能仪器是计算机技术与测试技术相结合的产物,仪器内部带有处理能力很强的智能软件。仪器仪表已不再是简单的硬件实体,而是硬件、软件相结合。近年来,智能仪器已开始从较为成熟的数据处理向知识处理发展,使其功能向更高层次发展。1 智能仪器的发展20 世纪 90 年代以来,仪器仪表的智能化突出表现在以下几个方面:(2) 微型化。微电子技术、微机械技术、信息技术等的综合应用使得仪器成为体积小、功能齐全的智能仪器,能够完成信号的采集、处理、控制信号的输出、放大、与其它仪器的接口等功能,在自动化技术、航天、军事、生物技术、医疗领域有着独特的作用

2、。(3) 多功能化。多功能本身就是智能仪器仪表的一个特点,例如具有脉冲发生器、频率合成器和任意波形发生器等功能的函数发生器,不但性能上(如准确度)比专用脉冲发生器和频率合成器高,而且在各种测试功能上提供了较好的解决方案。(4) 智能化。现代检测与控制系统,或多或少的趋向于智能化这个特点。智能仪器的进一步发展将含有一定的人工智能,这样就可无需人的干预而自主地完成检测或控制功能。(5)仪器虚拟化。在虚拟现实系统中,数据分析和显示用 PC 机的软件来完成,只要额外提供一定的数据采集硬件,就可以与 PC 机组成测量仪器。这种基于 PC 机的测量仪器称为虚拟仪器 VI(Virtual Instrumen

3、t)。在虚拟仪器中,使用同一个硬件系统,只要应用不同的软件编程,就可得到功能完全不同的测量仪器。“软件就是仪器”。作为虚拟仪器核心的软件系统具有通用性、通俗性、可视性、可扩展性和升级性,代表着当今仪器发展的新方向。(6) 仪器仪表系统的网络化。一般的智能仪器仪表都具有双向通信功能,但这种双向通信功能离真正意义上的网络通信还有距离。伴随着网络技术的飞速发展,Internet 技术使仪器仪表在实现智能化的基础上同时实现网络化,使现场测控参量就近登临网络,并具备必要的信息处理功能。2 网络化仪器的功能需求和技术支持2.1 支持远程测控需求网络化仪器,如现场总线智能仪表,是适合在远程测控中使用的仪器,

4、是仪器测控技术、现代计算机技术、网络通信技术与微电子技术深度融合的结果。网络化设备既可以像普通仪器那样按设定程序对相关物理量进行自动测量、控制、存储和显示测量结果及控制状态;同时具有重要的网络应用特征,经授权的仪器使用者,通过 Internet 可以远程对仪器进行功能操作、获取测量结果并对仪器实时监控、设置参数和故障诊断,控制其在Internet 上动态发布信息。它们与计算机一样,成了网络中的独立节点,很方便地就能与就近的网络通信线缆直接连接,而且“即插即用”,直接将现场测试数据送上网;用户通过浏览器或符合规范的应用程序即可实时浏览到这些信息(包括处理后的数据、仪器仪表的面板图像等)。2.2

5、网络化仪器的特点基于 Internet 的测控系统中前端模块不仅完成信号的采集和控制,还兼顾实施对信号的分析与传输,因为它以一个功能强大的微处理器和一个嵌入式操作系统为支撑。在这个平台上,使用者可以很方便地实现各种测量功能模块的添加、删除以及不同网络传输方式的选择。其次,基于 Internet 的测控系统最为显著的特点,是信号传输的方式发生了改变。基于 Internet 的测控系统对测量、控制信号等的传输,是建立在公共的 Internet上的。有了前端嵌入式模块,系统的测量数据安全有效的传输便成为可能。再有,基于Internet 的测控系统对测得结果的表达和输出也有了较大改进,一方面,不管身在

6、何处,使用者都可通过客户机方便地浏览到各种实时数据,了解设备现在的工作情况;另一方面,在客户端的控制中心,所拥有的智能化软件和数据库系统都可被调用来对测得结果分析,以及为使用者下达控制指令或作决策提供帮助。2.3 接入 Internet 或以太网的方法网络化仪器仪表的设计方法,是把嵌入式系统嵌入到仪器仪表中,让其成为测量和控制的核心。通常,嵌入式仪器接入 Internet 或以太网成为网络仪器有三种方法:(1) 由 32 位高档 MCU 构成嵌入式仪器,因为有足够资源可扩充利用,整个 TCP/IP协议族可以做到系统里去,因而可以成为直接接入 Internet 的网络仪器,但开发难度大;(2)

7、对于低档 8 位机组成的嵌入式仪器,采用专用网络(如 RS-232、RS-485、Profibus 等)将若干嵌入式仪器与 PC 相连,把 PC 作为网关,并由 PC 把该网络上的信息转换为 TCP/IP 协议数据包,发送到 Internet 上实现信息共享,但必须要专门配一台 PC 来进行协议转换;(3) 由 8 位单片机组成直接接入 Internet 的嵌入式网络化仪器,这种方案好处是可以利用以前的基于 8 位单片机的测量设备,通过外加网络芯片,直接驱动网络接口芯片,但占用资源(ROM、RAM、CPU)较多,要求单片机具有足够快的运行速度。2.4 支持网络的接口芯片网络接口芯片使用 REL

8、TEK 公司的 RTL8019AS,由于其优良的性能、低廉的价格,是用来进行以太网通讯的理想芯片。(1) 主要性能符合 Ethernet与 IEEE802.3 标准;为全双工通信接口,收发可同时达到 10Mbps的速率;内置 16K 的 SRAM,用于收发缓冲,降低对主处理器的速度要求;支持 8/16 位数据总线,8 条中断申请线以及 16 个 I/O 基地址选择;能完成物理帧的形成、编解码、CRC 的形成和校验、数据的收发等,可以通过交换机在双绞线上同时发送和接收数据。 (2) 内部结构RTL8019AS 内部可分为远程 DMA 接口、本地 DMA 接口、MAC(介质访问控制)逻辑、数据编码

9、解码逻辑和其他端口。远程 DMA 接口是指单片机对 RTL8019AS 内部RAM 进行读写的总线,即 ISA 总线的接口部分。单片机收发数据只需对远程 DMA 操作。本地 DMA 接口是 RTL8019AS 与网线的连接通道,完成控制器与网线的数据交换。(3) 内部 RAM 地址空间分配RTL8019AS 内部有两块 RAM 区。一块 16K 字节,地址为 0x40000x7fff;一块32 字节,地址为 0x00000x001f。RAM 按页存储,每 256 字节为一页。一般将 RAM的前 12 页(即 0x40000x4bff)存储区作为发送缓冲区;后 52 页(即0x4c000x7ff

10、f)存储区作为接收缓冲区。第 0 页地址为 0x00000x001f,用于存储以太网物理地址。(4) I/O 地址分配RTL8019AS 具有 32 位输入输出地址,地址偏移量为 00H1FH。其中00H0FH 共 16 个地址,为寄存器地址。寄存器分为 4 页:PAGE0、PAGE1、PAGE2、PAGE3,由 RTL8019AS 的 CR(Command Register 命令寄存器)中的 PS1、PS0 位来决定要访问的页。远程 DMA 地址包括 10H17H,都可以用来作远程 DMA 端口,只要用其中的一个就可以了。复位端口包括 18H1FH 共 8 个地址,功能一样,用于 RTL80

11、19AS 复位。3 网络化仪器的体系结构及实现3.1 抽象模型网络化仪器是电工电子、计算机硬件软件以及网络、通信等多方面技术的有机组合体,结构比较复杂,多采用体系结构来表示其总体框架和系统特点。网络化仪器的体系结构,包括基本网络系统硬件、应用软件和各种协议。图 1 是网络化仪器体系结构的一个简单模型,该模型将网络化仪器划分成若干逻辑层,可更本质的反映网络化仪器具有的信息采集、存储、传输和分析处理的原理特征首先是硬件层,主要指远端传感器信号采集单元,包括微处理器系统、信号采集系统、 硬件协议转换和数据流传输控制系统。硬件层功能的实现得益于嵌入式系统的技术进步和 近年来大规模集成电路技术的发展,硬

12、件协议转换和数据流传输控制依靠 FPGA/CPLD 实 现。另一个逻辑层是嵌入式操作系统内核,该层的主要功能是提供一个控制信号采集和数 据流传输的平台。该平台的前端模块单元的主要资源有处理器、存储器、信号采集单元和 信息;主要功能是合理分配、控制处理器,控制信号的采集单元以使其正常工作,并保证 数据流的有效传输。该逻辑层主要由链路层、网络层、传输层和接口等组成。根据应用的 不同,本层的具体实现方式可能不同,且可在一定程序上简化。3.2 外围硬件设计方案Internet 或以太网通信的硬件设计方案有两个。(1) 以专用 CPU 作为控制器,使用 C 语言编程实现 TCP/IP 通信。优点是:专用

13、 CPU 的处理能力较强,便于实现测试仪器的其它功能。缺点是成本略高,硬件略复杂。 (2) 使用 51 系列单片机作为控制器的 CPU,不采用嵌入式操作系统,直接使用 C51 编 程,实现数据链路层协议和 TCP/IP 协议。优点是硬件比较简单,价格低。缺点是软件工 作量大,难度也大。以单片机为核心、采用 RTL8019 以太网接口芯片为网络仪器接口所 组成的网络化仪器的基本结构如图 2 所示。3.3 协议和设计系统进行初始化操作,主要是对网络接口芯片进行配置。配置完后,系统处于等待状 态,直到客户方有数据发送过来。数据的接收是通过网络接口芯片实现的,它能够对网络 上的物理帧进行包过滤。当一个

14、以太网站点的信息帧被发送到共享的信号信道或介质时, 所有与信道相连的以太网接口都读入该帧,并且查看该帧的第一个 48bit 地址字段,其中 包含有目的地址。各个接口把帧的目的地址与自己的 48bit 地址进行比较。如果该地址与 帧的目的地址相同,则该以太网站点将继续读入整个帧,并将它送给计算机正在运行的上 层网络软件。上层网络软件读入帧的类型字段,判断这个信息帧是 ARP 包还是 IP 包,然 后再交给不同的协议栈处理。当其他的网络接口发现目的地址与它们的地址不同时,就会 停止读入该帧。发送数据时,将待发送的数据按帧格式封装,通过远程 DMA 通道送到 RTL8019AS 中的发送缓冲区,然后

15、发出传送命令,完成帧的发送。需要设置以太网目的地址、以太网 源地址、协议类型,再按所设置的协议类型来设置数据段。之后启动远程 DMA,数据写入 RTL8019AS 的 RAM,再启动本地 DMA,将数据发送到网上。RTL8019AS 无法将数据 包通过 DMA 通道一次存入 FIFO,则在构成一个新的数据包之前必须先等待前一数据包发 送完成。为提高发送效率,设计将 12 页的发送缓存区分为两个 6 页的发送缓冲区,一个用于数据包发送,另一个用于构造端的数据包,交替使用。4 结束语结束语随着计算机技术、网络技术的进步和不断拓展,21 世纪的仪器概念将是一个开放的系 统概念。以 PC 机和工作站为基础,通过组建网络来构成实用的测控系统,提高生产效率 和共享信息资源,已成为现代仪器仪表发展的方向。网络化仪器的概念是对传统测量仪器 概念的突破。从某种意义上说,计算机和现代仪器仪表已相互包容,计算机网络也就是通 用的仪器网络。如果在测控系统中由更多不同类型的智能设备也像计算机和工作站一样成 为网络的节点联入网络,它们充分利用目前已比较成熟的 Internet 网络的设备,则将不 仅能实现更多资源的共享、降低组建系统的费用,还可提高测控系统的功能,并拓展其应 用的范围。“网络就是仪器”的概念,确切的概述了仪器的网络化发展趋势。

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 初中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号