应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子

上传人:枫** 文档编号:521972780 上传时间:2023-06-09 格式:DOC 页数:39 大小:938.50KB
返回 下载 相关 举报
应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子_第1页
第1页 / 共39页
应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子_第2页
第2页 / 共39页
应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子_第3页
第3页 / 共39页
应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子_第4页
第4页 / 共39页
应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子_第5页
第5页 / 共39页
点击查看更多>>
资源描述

《应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子》由会员分享,可在线阅读,更多相关《应用物理专业毕业论文-变分迭代法求解恒定电场中一维线性谐振子(39页珍藏版)》请在金锄头文库上搜索。

1、本 科 毕 业 设 计(论文)学 院 数理学院 专 业 应用物理专业 学生姓名 班级学号 指导教师 变分迭代法求解恒定电场中一维线性谐振子Variational iteration method for solving one-dimensional linear harmonic oscillator in a constant electric field 江苏科技大学毕业设计(论文)任务书学院名称: 数理学院 专 业: 应用物理学 学生姓名: 指导教师: 毕业设计(论文)题目: 变分迭代法求解恒定电场中一维线性谐振子 一、毕业设计(论文)内容及要求(包括原始数据、技术要求、达到的指标和应

2、做的实验等) (1) 调研变分迭代法用于解非线性微分方程内外研究进展,总结该法解方程步骤、特点,用变分迭代法求解恒定电场中一维线性谐振子问题。 (2) 给出问题解的数学表达式,并与微扰法结果比较。二、完成后应交的作业(包括各种说明书、图纸等)1. 毕业论文一份2. 外文译文一篇3.开题报告4.中期检查表三、完成日期及进度至2015年6月14日,共16周。进度安排:1-4周,查阅资料、调研,完成开题报告;5-12周,完成课题有关公式推导、程序编写、计算机绘图、论文写作初稿。其中第8周其中检查。12周-14周,初稿查重、上传毕业设计系统;15-16周,定稿、评阅、答辩。四、主要参考资料(包括书刊名

3、称、出版年月等): 1. Jihua He. A new approach to nonlinear partial differential equation. Communications in Nonlinear Science & Numerical Simulation, 1997, 2: 230-235 2. L. Ahmad Sotani, Ahmad Shirzadi. A new modification of the variational iteration method. Computers and Mathematics with Applications. , 20

4、10, 59: 2528-2535. 3. Samira Berkani, Farida Manseur, Amed Maidi. Optical control based on the variational iteration method, Computers and Mathematics with Applications, 2012, 64:604-610 4. 赵青锋. 待定系数法求解一维线性谐振子在微扰体系下的解析解. 大学物理, 2011, 30(5):55-56 系(教研室)主任: (签章) 年 月 日 学院主管领导: (签章) 年 月 日江苏科技大学本科毕业设计(论文)

5、摘 要在现今的量子力学中,一维线性谐振子可谓是一个相当典型且重要的系统。其最早是由德国的物理学家普朗克提出,他用简谐振子成功地解释了热能的辐射与吸收。很多人认为简谐振子是一种很简单的运动模型,但是许多复杂运动模型都是以谐振子的运动为基础的,它在很多领域都有广泛的应用。因此,研究线性谐振子具有重要意义。本文通过变分迭代法1求解恒定电场中一维线性谐振子Schrodinger方程,确定本征能量及本征函数的近似解,并对结果进行分析,为解高次幂薛定谔方程的解析解提供新方法。 关键词:变分迭代法;一维线性谐振子;薛定谔方程 AbstractIn todays quantum mechanics, one-

6、dimensional linear harmonic oscillator can be described as a fairly typical and important systems. It was first proposed by the German physicist Max Planck, he used simple harmonic oscillator to explain the success of radiation and absorption of heat. Many people think that harmonic oscillator is a

7、very simple model, but many complex models are based on a harmonic oscillator. It is widely used in many fields, therefore, the study of the linear harmonic oscillator is significant. In this paper, the variational iteration method is used to solve the one-dimensional linear harmonic oscillator in a

8、 constant electric field to determine the intrinsic energy and approximate eigenfunction solution, and the results were analyzed,providing a new method for the solution of the higher powers of the Schrdinger equation .Keywords: variational iteration method; one-dimensional linear harmonic oscillator

9、; Schrdinger equation目 录第一章 绪论11.1引言11.2课题背景21.2.1国外发展21.2.2国内发展31.3论文研究的目的与意义41.4论文主要内容4第二章 理论基础52.1 泛函和变分52.1.1引言52.1.2 泛函72.1.3 自变函数的变分82.1.4 泛函的变分92.1.5 泛函变分的性质112.1.6 各种泛函的变分122.2 迭代法142.2.1 迭代法与不动点定理142.2.2 迭代格式的构造162.2.3 迭代法的收敛性与收敛阶17第三章 恒定电场中一维线性谐振子20结 论26致 谢27参考文献28附 录30I第一章 绪论1.1引言在自然界中有很多

10、现象与简谐振动有关,任何系统在某个平衡位置附近的小振动,例如晶格振动、分子振动、辐射场的振动以及原子核表面振动等一般都是能分解成若干个相互独立的一维简谐振动。简谐振动往往还可以作为一些复杂运动的初步近似,所以对简谐振动的研究,无论在单纯的理论上还是在某些应用上都是很重要的。 举一个很简单的例子,在双原子分子中,两个原子之间的势V是关于二者相对距离x的函数。如图(1-1),当x = a时,V 取到一极小值V0 。我们可以把x = a 附近的势展开成泰勒级数: 图1-1 势V与距离x的函数图像 然后把坐标原点换成(a, V0),我们就可以得到标准谐振子势: 由此可见,在某些相当复杂的势场下,粒子的

11、运动通常被近似的描述为线性谐振动。 经典力学中,一维谐振子的哈密顿2为 上式用相应算符代入,得 它是一维谐振子的哈密顿算符,是能量算符。而本文讨论的恒定电场中,其体系的哈密顿算符为 可以设,带入本征值方程,可得体系的薛定谔方程3 本论文的主要内容就是通过变分迭代法4解上式的薛定谔方程。1.2课题背景1.2.1国外发展 变分迭代法在国外有很多研究及应用。通过查阅资料得知的研究如下:1982年,J.S.Pang、 D.Chan(工业管理研究生院,卡内基梅隆大学)研究了求解变分不等式和非线性互补问题的各种迭代法,这种方法具有局部收敛性和全局收敛性5。其中包括的方法有牛顿和几个连续超松弛算法。其中重点

12、研究的是线性近似方法系列。1985年,Jong-Shi Pang(管理学院,德克萨斯大学)研究了非对称变分不等式问题在产品组合:应用及迭代方法6。其中描述了几个平衡问题可以统一建模的一个有限维的非对称变分不等式定义,并探讨求解变分不等式问题的各种迭代方法的局部收敛性和全局收敛性。由于特殊的笛卡儿乘积结构,这些迭代方法将原变分不等式问题转化为在较低维度的一系列简单的变分不等式问题。2001年,M.A. Noor发表了关于广义变分不等式的迭代方法的论文7。2008年,Muhammad Aslam Noor, Khalida Inayat Noor(巴基斯坦信息技术学院)研究了关于在 L p 空间包

13、含三步迭代方法的一般变分8。其中,广义变分包含了不动点的问题。可以使用这种等价性讨论在L p空间变分包含的存在。采用更新的技术解决方案,我们提出了一些解决一般变分的方法,包含三步迭代方法。2009年,Malik Mamode(物理系,建筑物理与系统实验室,留尼旺岛,法国大学)发表了变分迭代法和初始值问题的文章9。他提出了拉格朗日乘数的分布特征,这可以被解释为缓速格林函数。这种提法使可能的迭代公式为Picard迭代方案进行简化,有利于收敛性分析。2011年,Muhammad Aslam Noor(数学系,信息技术,公园路,伊斯兰堡,巴基斯坦COMSATS研究所)发表了对于一般的非凸变分不等式的一

14、类迭代方法的论文10。在本文中,他提出三步迭代方法,并成功解决了广义非凸变分不等式。2014年,I. B. Badriev, V. V. Banderov(喀山(伏尔加地区)联邦大学)发表了关于为解决软壳理论的变分不等式的迭代方法的论文11。其是对在巴拿赫空间中单调型算子的变分不等式问题的迭代法的收敛性研究。1.2.2国内发展 国内对变分迭代法的研究也有很多。例如:2004年,谢长珍(汕头大学)将变分迭代法运用到求解微扰问题12。之前都是用微扰法解微扰问题,这种方法本身有很大的局限性。本文把变分法和迭代法相结合,成功解决了微扰法所不能解决的问题。2005年,莫嘉琪和林万涛(安徽师范大学)在物理学报上发表了关于厄尔尼诺大气物理机理的变分迭代解法的论文。他们利用变分迭代法解得到了近似展开式。并通过与特殊情形下所得精

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 水利工程

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号