学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………浙江省杭州市名校2025届九上数学开学学业水平测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)平面直角坐标系中,将直线l向右平移1个单位长度得到的直线解析式是y=2x+2,则原来的直线解析式是( )A.y=3x+2 B.y=2x+4 C.y=2x+1 D.y=2x+32、(4分)下列选项中,不能判定四边形ABCD是平行四边形的是 A., B.,C., D.,3、(4分)如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有( )A.1个 B.2个 C.3个 D.4个4、(4分)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<05、(4分)如图,平行四边形的对角线与相交于点,下列结论正确的是( )A.B.C.D.是轴对称图形6、(4分)如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为( )A.3 B.5 C.2 D.6.57、(4分)在平面直角坐标系中,函数y=(k﹣1)x+(k+2)(k﹣2)的图象不经过第二象限与第四象限,则常数k满足( )A.k=2 B.k=﹣2 C.k=1 D.k>18、(4分)下列二次根式;5;;;;.其中,是最简二次根式的有( )A.2个 B.3个 C.4个 D.5个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某商店销售型和型两种电脑,其中型电脑每台的利润为400元,型电脑每台的利润为500元,该商店计划一次性购进两种型号的电脑共100台,设购进型电脑台,这100台电脑的销售总利润为元,则关于的函数解析式是____________.10、(4分)将2019个边长为2的正方形,按照如图所示方式摆放,O1,O2,O3,O4,O5,…是正方形对角线的交点,那么阴影部分面积之和等于_____.11、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.12、(4分)若不等式的正整数解是,则的取值范围是____.13、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,矩形OABC的邻边OA、OC分别与x、y轴重合,矩形OABC的对称中心P(4,3),点Q由O向A以每秒1个单位速度运动,点M由C向B以每秒2个单位速度运动,点N由B向C以每秒2个单位速度运动,设运动时间为t秒,三点同时出发,当一点到达终点时同时停止.(1)根据题意,可得点B坐标为__________,AC=_________;(2)求点Q运动几秒时,△PCQ周长最小?(3)在点M、N、Q的运动过程中,能否使以点O、Q、M、N为顶点的四边形是平行四边形?若能,请求出t值;若不能,请说明理由.15、(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图: 根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图; (2)写出被抽查学生的体育锻炼时间的众数和中位数; (3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.16、(8分)某智能越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.已知A,B两款的进货和销售价格如下表:A款B款进货价格(元)11001400销售价格(元)今年的销售价格2000(1)今年A款每部售价多少元?(2)该店计划新进一批A款和B款共90部,且B款的进货数量不超过A款数量的两倍,应如何进货才能使这批获利最多?17、(10分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.18、(10分)如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为,连接,.(1)求证:;(2)当为中点时,四边形是什么特殊四边形?说明你的理由;(3)当为中点时,则当的大小满足什么条件时,四边形是正方形?请直接写出结论.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.20、(4分)我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.21、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.22、(4分)已知菱形的边长为6cm,一个内角为60°,则菱形的面积为______cm1.23、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,的一个外角为,求,,的度数.25、(10分)如图1,在△ABC中,AB=BC=5,AC=6,△ABC沿BC方向向右平移得△DCE,A、C对应点分别是D、E.AC与BD相交于点O.(1)将射线BD绕B点顺时针旋转,且与DC,DE分别相交于F,G,CH∥BG交DE于H,当DF=CF时,求DG的长;(2)如图2,将直线BD绕点O逆时针旋转,与线段AD,BC分别相交于点Q,P.设OQ=x,四边形ABPQ的周长为y,求y与x之间的函数关系式,并求y的最小值.(3)在(2)中PQ的旋转过程中,△AOQ是否构成等腰三角形?若能构成等腰三角形,求出此时PQ的长?若不能,请说明理由.26、(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】在直线上取一点(-1,0),向左平移一个单位后坐标为(-2,0),设平移前的直线解析式为:y=2x+b,把(-2,0)带入,得b=4,所以y=2x+4,故选:B.点睛:此题考查了图形的平移与函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上点的平移相同.关键是要搞清楚平移前后的解析式有什么关系.2、C【解析】根据平行四边形的判定方法逐项进行判断即可.【详解】A、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由,不能判断四边形ABCD是平行四边形,有可能是等腰梯形;故本选项符合题意;D、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意,故选C.本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.3、B【解析】根据中心对称图形的概念求解.【详解】第一个是是中心对称图形,故符合题意;第二个是中心对称图形,故符合题意;第三个不是中心对称图形,故不符合题意;第四个不是中心对称图形,故不符合题意.所以共计2个中心对称图形.故选:B.考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、A【解析】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>1,又该直线与y轴交于正半轴,∴b>1.∴k>1,b>1.故选A.5、A【解析】由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选A.此题考查了平行四边形的性质.此题难度不大,注意熟记平行四边形的性质定理是关键.6、A【解析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【详解】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC-DE=8-5=3;故选A.此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.7、A【解析】根据一次函数的性质求解.【详解】∵一次函数y=(k-1)x+(k+2)(k-2)的图象不经过第二象限与第四象限,则k-1>0,且(k+2)(k-2)=0,解得k=2,故选A.本题考查一次函数的图象与系数的关系,关键是根据一次函数的性质解答.8、B【解析】根据最简二次根式的定义即可判断.【详解】,,,、、是最简二次根式.故选:.本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式.【详解】解:根据题意,y=400x+500(100-x)=-100x+50000;故答案为本题主要考查了一次函数的应用,解题的关键是根据总利润与销售数量的数量关系列出关系式.10、2【解析】根据题意可得:阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则2019个这样的正方形重叠部分即为(2019﹣1)个阴影部分的和,问题得解.【详解】由题意可得阴影部分面积等于正方形面积的,则一个阴影部分面积为:1.n个这样的正方。