学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省周口市川汇区2025届数学九上开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在正方形ABCD中,AB=10,点E、F是正方形内两点,AE=FC=6,BE=DF=8,则EF的长为( )A. B. C. D.32、(4分)某种材料的厚度是,0.0000034这个数用科学记数法表示为( )A. B. C. D.3、(4分)如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为( )A.5.5 B.5 C.6 D.6.54、(4分)下列各式中,运算正确的是( )A. B. C. D.5、(4分)已知函数 y=(k-3)x,y 随 x 的增大而减小,则常数 k 的取值范围是( )A.k>3 B.k<3 C.k<-3 D.k<06、(4分)下列计算错误的是( )A. =2 B.=3 C.÷=3 D.=1﹣=7、(4分)方程x2+x﹣12=0的两个根为( )A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=38、(4分)如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:=______.10、(4分)的化简结果为________11、(4分)如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.12、(4分)如图,小明从点出发,前进5 后向右转20°,再前进5 后又向右转20°,这样一直走下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形(1)小明一共走了________米;(2)这个多边形的内角和是_________度.13、(4分)如图,在平行四边形中,在上,且,若的面积为3,则四边形的面积为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知一次函数.(1)画出该函数的图象;(2)若该函数图象与轴,轴分別交于、两点,求、两点的坐标.15、(8分)计算:(-)(+)--|-3|16、(8分)已知,正比例函数的图象与一次函数的图象交于点.(1)求,的值;(2)求一次函数的图象与,围成的三角形的面积.17、(10分)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.(1)当△BEF是等边三角形时,求BF的长;(2)求y与x的函数解析式,并写出它的定义域;(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.18、(10分)在平面直角坐标系中,直线经过、两点.(1)求直线所对应的函数解析式:(2)若点在直线上,求的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.20、(4分)将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.21、(4分)已知直角三角形的两条边为5和12,则第三条边长为__________.22、(4分)如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________. 23、(4分)已知直线与直线平行,那么_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,直线与轴、轴分别交于,两点.(1)反比例函数的图象与直线交于第一象限内的,两点,当时,求的值;(2)设线段的中点为,过作轴的垂线,垂足为点,交反比例函数的图象于点,连接,,当以,,为顶点的三角形与以,,为顶点的三角形相似时,求的值.25、(10分)如图,矩形的对角线与相交点分别为的中点,求的长度.26、(12分)如图,在矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形;参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=8,由AE=6,得出EG=2,同理得出GF=2,再根据勾股定理得出EF的长.【详解】延长AE交DF于G,如图:∵AB=10,AE=6,BE=8,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=8,DG=AE=6,∴EG=2,同理可得:GF=2,∴EF=,故选B.此题考查正方形的性质、勾股定理,解题关键在于作辅助线.2、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10−1.故选:B.此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解析】连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.【详解】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴∠B=90°,AE=AC,∴AC=,∴AE=6.5,∵点A表示的数是-1,∴OA=1,∴OE=AE-OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.4、B【解析】根据=|a|,(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A、,故原题计算错误;B、=4,故原题计算正确;C、,故原题计算错误;D、2和不能合并,故原题计算错误;故选B.此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.5、B【解析】根据一次项系数小于0时, y 随 x 的增大而减小,即可解题.【详解】解:由题可知k-30,解得:k<3,故选B.本题考查了一次函数的增减性,属于简单题,熟悉概念是解题关键.6、D【解析】分析:根据二次根式的化简及计算法则即可得出答案.详解:A、 =2,正确;B、=3,正确;C、÷=3,正确;D、,错误;故选D.点睛:本题主要考查的是二次根式的计算法则,属于基础题型.明确计算法则是解决这个问题的关键.7、D【解析】利用因式分解法解方程即可得出结论.【详解】解:x2+x-12=0(x+4)(x-1)=0,则x+4=0,或x-1=0,解得:x1=-4,x2=1.故选:D.本题考查因式分解法解一元二次方程,熟练掌握因式分解的方法是解题的关键.8、C【解析】利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.10、【解析】根据二次根式的乘法,化简二次根式即可.【详解】解:,故答案为:.本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.11、144米1.【解析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【详解】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为10-1=18(米),宽为10-1=8(米),则草地面积为18×8=144米1.故答案为:144米1.本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.12、90 2880 【解析】先根据题意判断该多边形的形状,再计算该多边形的边的总长和内角和即可.【详解】解:由题意知,该多边形为正多边形,∵多边形的外角和恒为360°,360÷20=18,∴该正多边形为正18边形.(1)小明一共走了:5×18=90(米);故答案为90(2)这个多边形的内角和为:(18-2)×180°=2880°故答案为2880本题考查了正多边形的相关知识,掌握多边形的内角和定理是解决本题的关键.13、9【解析】根据平行四边形的性质得到△ABE和△EDC的高相同,即可求出的面积为,再由进行解题即可.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,即△ABE和△EDC的高相同,∵,的面积为3,∴的面积为, ∴四边形的面积=6+3=9故答案是:9本题考查了平行四边形的性质,平行线间的三角形的关系,属于基础题,熟悉平行四边形的性质是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)答案见解析;(2),.【解析】(1)根据描点法,可得函数图象;(2)根据自变量与函数值的对应关系,可得答案【详解】解:(1)列表:描点、连线得到一次函数的图象如图所示:(2)在中,令得,令得,本题考查了一次函数图象,利用描点法画函数图象,利用自变量与函数值的对应关系求。