文档详情

安徽省蚌埠市局属学校2024-2025学年九年级数学第一学期开学达标测试试题【含答案】

中****料
实名认证
店铺
DOC
1.31MB
约24页
文档ID:593329636
安徽省蚌埠市局属学校2024-2025学年九年级数学第一学期开学达标测试试题【含答案】_第1页
1/24

学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………安徽省蚌埠市局属学校2024-2025学年九年级数学第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形;以此进行下去,则正方形的面积为  A. B. C. D.2、(4分)三角形的三边长分别为6,8,10,它的最短边上的高为( )A.6 B.4.5 C.2.4 D.83、(4分)下列各组数据中能作为直角三角形的三边长的是(  )A.1,2,2 B.1,1, C.4,5,6 D.1,,24、(4分)如图,RtABC中,∠ACB=90°,CD是高,∠A=30°,CD=cm则AB的长为( )A.4cm B.6cm C.8cm D.10cm5、(4分)下列事件中,是必然事件的为(  )A.明天会下雨B.x是实数,x2<0C.两个奇数之和为偶数D.异号两数相加,和为负数6、(4分)下列实数中,能够满足不等式的正整数是( )A.-2 B.3 C.4 D.27、(4分)下列曲线中能表示是的函数的是( )A. B.C. D.8、(4分)如图,点A在双曲线上,点B在双曲线上,且AB∥y轴,C、D在y轴上,若四边形ABCD为矩形,则它的面积为( )A.1.5 B.1 C.3 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若关于x的方程=m无解,则m的值为_____.10、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.11、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.12、(4分)已知菱形的边长为4,,如果点是菱形内一点,且,那么的长为___________.13、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.三、解答题(本大题共5个小题,共48分)14、(12分)先化简:(1﹣)•,然后a在﹣1,0,1三个数中选一个你认为合适的数代入求值.15、(8分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;(1)甲的射击成绩的平均数和方差分别是多少?(2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?16、(8分)如图,在平面直角坐标系中,直线,与反比例函数在第一象限内的图象相交于点 (1)求该反比例函数的表达式;(2)将直线沿轴向上平移个单位后与反比例函数在第一象限内的图象相交于点,与轴交于点,若,连接,.①求的值;②判断与的位置关系,并说明理由;(3)在(2)的条件下,在射线上有一点(不与重合),使,求点的坐标.17、(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.(1)求一次函数的表达式;(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.18、(10分)如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.20、(4分)如图,两个反比例函数y= 和y= 在第一象限内的图象依次是C2和C1,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为_________.21、(4分)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .22、(4分)如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是_____.23、(4分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x > k1x+b的解集为________________二、解答题(本大题共3个小题,共30分)24、(8分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.25、(10分)在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.26、(12分)如图,四边形的对角线、相交于点,,过点且与、分别相交于点、,(1)求证:四边形是平行四边形;(2)连接,若,周长是15,求四边形的周长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【详解】解:如图,已知小正方形ABCD的面积为1,则把它的各边延长一倍后,的面积,新正方形的面积是,从而正方形的面积为,以此进行下去,则正方形的面积为.故选:B.此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.2、D【解析】本题考查了直角三角形的判定即勾股定理的逆定理和直角三角形的性质由勾股定理的逆定理判定该三角形为直角三角形,然后由直角三角形的定义解答出最短边上的高.由题意知,,所以根据勾股定理的逆定理,三角形为直角三角形.长为6的边是最短边,它上的高为另一直角边的长为1.故选D.3、D【解析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4、C【解析】根据直角三角形的性质求出AC,得到BC=AB,根据勾股定理列式计算即可.【详解】在Rt△ADC中,∠A=30°,∴AC=1CD=4,在Rt△ABC中,∠A=30°,∴BC=AB,由勾股定理得,AB1=BC1+AC1,即AB1=(AB)1+(4)1,解得,AB=8(cm),故选C.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.5、C【解析】直接利用随机事件以及必然事件、不可能事件分别分析得出答案.【详解】A、明天会下雨是随机事件,故此选项错误;B、x是实数,x2<0,是不可能事件,故此选项错误;C、两个奇数之和为偶数,是必然事件,正确;D、异号两数相加,和为负数是随机事件,故此选项错误.故选C.此题主要考查了随机事件、必然事件、不可能事件,正确把握相关时间的定义是解题关键.6、D【解析】将各项代入,满足条件的即可.【详解】A选项,-2不是正整数,不符合题意;B选项,,不符合题意;C选项,,不符合题意;D选项,,符合题意;故选:D.此题主要考查不等式的正整数解,熟练掌握,即可解题.7、D【解析】根据函数的定义,每一个自变量x都有唯一的y值和它对应即可解题.【详解】解:由函数的定义可知,x与y的对应关系应该是一对一的关系或多对一的关系,据此排除A,B,C,故选D.本题考查了函数的定义,属于简单题,熟悉函数定义的对应关系是解题关键.8、D【解析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【详解】过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3−1=2.故选D.本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解本题的关键是正确理解k的几何意义.二、填空题(本大题共5个小题,每小题4分,共20分)9、或.【解析】分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即,解得m=故答案为:或.本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.10、 (-2,2)【解析】由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.【详解】解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,∴A′的坐标为(-2,2).故答案为:(-2,2).本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11、【解析】以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.【详解】以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图按顺时针方向旋转得到在中,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),,即在和中∴.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.12、1或3【解析】数形结合,画出菱形,根据菱形的性质及勾股定理即可确定BP的值。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档