· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·2022年山东省中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若中,,,高,则的长为( )A.28或8 B.8 C.28 D.以上都不对2、下列图形中,能用,,三种方法表示同一个角的是( )A. B.C. D.3、如图,,,,则的度数是( )A.10° B.15° C.20° D.25°4、下列计算中,正确的是( )A.a2+a3=a5 B.a•a=2a C.a•3a2=3a3 D.2a3﹣a=2a25、如图,已知点,,,在一条直线上,,,那么添加下列一个条件后,仍无法判定的是( )A. B. C. D.6、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )A.米 B.10米 C.米 D.12米7、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,点E为对角线BD上任意一点,连接AE、CE. 若AB=5,BC=3,则AE2-CE2等于( )· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·A.7 B.9 C.16 D.258、如图是我国某市12月份连续4天的天气预报数据,其中日温差最大的一天是( )A.12月13日 B.12月14日 C.12月15日 D.12月16日9、一元二次方程的根为( )A. B. C. D.10、已知,,则的值为( )A.6 B. C. D.8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,,与分别是斜边上的高和中线,那么_______度.2、如图,阴影部分的面积是______.3、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.4、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.5、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.三、解答题(5小题,每小题10分,共计50分)1、计算:(x+2)(4x﹣1)+2x(2x﹣1).2、如图,四边形中,,平分,.求证:是等边三角形.3、如图,平分,点C段上,,求证:.4、尺规作图:已知:如图1,直线MN和直线MN外一点P.求作:直线PQ,使直线PQMN.小智的作图思路如下:①如何得到两条直线平行?小智想到,自己学习线与角的时候,有4个定理可以证明两条直线平行,其中有“内错角相等,两条直线平行”.②如何得到两个角相等?小智先回顾了线与角的内容,找到了几个定理和1个概念,可以得到两个角相等.小智又回顾了三角形的知识,也发现了几个可以证明两个角相等的定理.最后,小智选择了角平分线的概念和“等边对等角”.③画出示意图:④根据示意图,确定作图顺序.(1)使用直尺和圆规,按照小智的作图思路补全图形1(保留作图痕迹);· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·(2)完成下面的证明:证明:∵AB平分∠PAN,∴∠PAB=∠NAB.∵PA =PQ,∴∠PAB=∠PQA ( ① ).∴∠NAB =∠PQA.∴PQMN ( ② ).(3)参考小智的作图思路和流程,另外设计一种作法,利用直尺和圆规在图2中完成.(温馨提示:保留作图痕迹,不用写作法和证明)5、甲、乙两人沿同一直道从A地去B地.已知A,B两地相距9000m,甲的步行速度为100m/min,他每走半个小时就休息15min,经过2小时到达目的地.乙的步行速度始终不变,他在途中不休息,在整个行程中,甲离A地的距离(单位:m)与时间x(单位:min)之间的函数关系如图所示(甲、乙同时出发,且同时到达目的地).(1)在图中画出乙离A地的距离(单位:m)与时间x之间的函数图象;(2)求甲、乙两人在途中相遇的时间.-参考答案-一、单选题1、A【解析】【分析】本题应分两种情况,①如果角C是钝角,此时高AD在三角形的外部,在RT△ABD中利用勾股定理求出BD,在RT△ACD中利用勾股定理求出CD,然后可得出BC=BD-CD,继而可得出△ABC的周长;②如果角C是锐角,利用勾股定理求出BD、BC,根据BC=BD+CD求出BC,进而可求出周长.【详解】解:①如果角C是钝角,在RT△ABD中,BD==18,在RT△ACD中,CD==10,∴BC=18-10=8;②如果角C是锐角,此时高AD在三角形的内部,在RT△ABD中,BD==18,在RT△ACD中,CD==10,∴BC=18+10=28;综上可得BC的长为28或8.· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·故选:A.【点睛】本题考查了勾股定理及三角形的知识,分类讨论是解答本题的关键,如果不细心很容易将∠C为钝角的情况忽略,有一定的难度.2、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A选项中,可用,,三种方法表示同一个角;B选项中,能用表示,不能用表示;C选项中,点A、O、B在一条直线上,∴能用表示,不能用表示;D选项中,能用表示,不能用表示;故选:A.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.3、B【解析】【分析】根据平行线的性质求出关于∠DOE,然后根据外角的性质求解.【详解】解:∵AB∥CD,∠A=45°,∴∠A=∠DOE=45°,∵∠DOE=∠C+∠E,又∵,∴∠E=∠DOE-∠C=15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.4、C【解析】【分析】根据整式的加减及幂的运算法则即可依次判断.【详解】A. a2+a3不能计算,故错误; B. a•a=a2,故错误;C. a•3a2=3a3,正确;D. 2a3﹣a=2a2不能计算,故错误;故选C.【点睛】此题主要考查幂的运算即整式的加减,解题的关键是熟知其运算法则.5、D【解析】【分析】· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·号学 级年 名姓· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·结合选项中的条件,是否能够构成的形式,若不满足全等条件即为所求;【详解】解:由可得,判定两三角形全等已有一边和一角;A中由可得,进而可由证明三角形全等,不符合要求;B中,可由证。