文档详情

2025届安徽省颍上县第五中学九上数学开学联考模拟试题【含答案】

中****料
实名认证
店铺
DOC
986KB
约25页
文档ID:592119282
2025届安徽省颍上县第五中学九上数学开学联考模拟试题【含答案】_第1页
1/25

学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届安徽省颍上县第五中学九上数学开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.根据两人的作法可判断()A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误2、(4分)如图,在中,的平分线交于,若,,则的长度为( )A. B. C. D.3、(4分)如图,直线经过第二、三、四象限,的解析式是,则的取值范围在数轴上表示为( ).A. B.C. D.4、(4分)在平面直角坐标系中,点P(﹣3,2)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)若分式在实数范围内有意义,则实数的取值范围是( )A. B. C. D.6、(4分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是( )A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形7、(4分)将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是( ).A.5 B. C.或4 D.5或8、(4分)如图,在中,,若有一动点从出发,沿匀速运动,则的长度与时间之间的关系用图像表示大致是()A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在坐标系中,有,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知是由旋转得到的.请写出旋转中心的坐标是____,旋转角是____度.10、(4分)如图,反比例函数 y=的图象经过矩形 OABC 的一个顶点 B,则矩形 OABC 的面积等于___.11、(4分)2016年5月某日,重庆部分区县的最高温度如下表所示:地区合川永川江津涪陵丰都梁平云阳黔江温度(℃)2526292624282829 则这组数据的中位数是__________.12、(4分)如图,矩形ABCD 的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.13、(4分)如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知点M,N分别是平行四边形ABCD的边AB,DC的中点.求证:四边形AMCN为平行四边形.15、(8分)已知:如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,过点F作FG⊥BF交BC的延长线于点G.(1)求证:四边形ABEF是菱形;(2)如果AB= 2,∠BAD=60°,求FG的长.16、(8分)某工厂生产的件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多.(1)求甲、乙两人各需加工多少件新产品;(2)已知乙比甲平均每天少加工件新产品,用时比甲多用天时间.求甲平均每天加工多少件新产品.17、(10分)计算:2×÷3﹣(﹣2.18、(10分)如图1,将线段平移至,使点与点对应,点与点对应,连接、.(1)填空:与的位置关系为 ,与的位置关系为 .(2)如图2,若、为射线上的点,,平分交直线于,且,求的度数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.20、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.21、(4分)_______.22、(4分)已知中,,,直线经过点,分别过点,作直线的垂线,垂足分别为点,,若,,则线段的长为__________.23、(4分)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是10,则较短的直角边的长为___________.二、解答题(本大题共3个小题,共30分)24、(8分)上午6:00时,甲船从M港出发,以80和速度向东航行。

半小时后,乙船也由M港出发,以相同的速度向南航行上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.25、(10分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?26、(12分)甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.(1)租用一辆甲种客车、一辆乙种客车各多少元?(2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题分析:甲的作法正确:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分线,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四边形ANCM是平行四边形.∵AC⊥MN,∴四边形ANCM是菱形.乙的作法正确:如图,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形.∵AB=AF,∴平行四边形ABEF是菱形.故选C.2、B【解析】由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB ,易得AB=AE.【详解】解:∵四边形ABCD为平行四边形,∴AB=CD=3,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,故选:B.本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.3、C【解析】根据一次函数图象与系数的关系得到m-2<1且n<1,解得m<2,然后根据数轴表示不等式的方法进行判断.【详解】∵直线y=(m-2)x+n经过第二、三、四象限,∴m-2<1且n<1,∴m<2且n<1.故选C.本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).也考查了在数轴上表示不等式的解集.4、B【解析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P(﹣3,2)在第二象限,故选:B.本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.5、D【解析】直接利用分式有意义的条件分析得出答案.【详解】∵代数式在实数范围内有意义,∴x+1≠0,解得:x≠-1.故选D.此题主要考查了分式有意义的条件,正确把握定义是解题关键.6、D【解析】试题分析:根据题意,可知,连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选D.考点:中点四边形7、D【解析】根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.【详解】解:∵△ABC沿EF折叠B和B′重合,∴BF=B′F,设BF=x,则CF=10-x,∵当△B′FC∽△ABC,,∵AB=8,BC=10,∴,解得:x=,即:BF=,当△FB′C∽△ABC,,,解得:x=5,故BF=5或,故选:D.本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.8、D【解析】该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P段BD上时,s随t的增大而减小;当点P段AD上时,s随t的增大而增大.【详解】解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P段AD上时,s随t的增大而增大.故D正确.故选:D.本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(本大题共5个小题,每小题4分,共20分)9、 1 【解析】先根据平面直角坐标系得出点的坐标,从而可得的垂直平分线,再利用待定系数法分别求出直线的解析式,从而可得其垂直平分线的解析式,联立两条垂直平分线即可求出旋转中心的坐标,然后根据旋转中心可得。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档