第二十章 函数一、常量和变量的概念在一个变化过程中,可以取不同数值的量叫做变量,而数值保持不变的量叫做常量.二、函数1.函数的概念在某个变化过程中,有两个变量x和y.如果给定x的一个值,就能相应地确定y的一个值,那么,就称y是x的函数(或者说y与x具有函数关系).其中,x叫做自变量.判断y是x的函数,要抓住三个点:(1)在同一个变化过程中;(2)有两个变量;(3)一个变量的数值随另一个变量的数值的变化而变化;(4)本质上是一种对应关系,即对于每一个给定的值,有一个唯一确定的值与之对应,否则就不是的函数.例如就不是函数,因为当时,,即有两个值与对应. 对于每一个给定的值,可以有一个值与之对应,也可以有多个值与之对应.例如在函数中,时,;时,.2.在研究函数问题时,自变量的取值范围应注意以下两点:(1)自变量的取值要符合实际问题.在实际问题中,自变量的取值范围应该符合实际意义,通常往往取非负数,整数之类.(2)自变量的取值要使函数表达式自身有意义.①表达式是整式时,自变量取全体实数;②表达式是分式时,自变量的取值要使分母不为0;③表达式是偶次根式时,自变量的取值必须使被开方数为非负数.表达式是奇次根式时,自变量取全体实数;④表达式是零次幂或负整数次幂时,自变量的取值必须使底数不为零的实数.⑤表达式是复合式时,自变量的取值是使各式成立的公共解.三、函数的表示1.函数关系的表示方法表达式、数值表和图像2.画函数图像的一般步骤(1)列表;(2)描点;(3)连线四、函数的应用1.用函数表达式表示实际问题中的数量关系2.从函数图象上读取信息从函数图象获取信息的方法:①理解横、纵坐标分别表示的实际意义.②分析已知(看已知的是自变量的值还是函数值),通过做x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值.③利用数形结合的思想:将“数”转化为“形” 由“形”定“数”3。