学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河北省邢台市临西县2025届九上数学开学监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为( )A.34 B.32 C.22 D.202、(4分)若分式在实数范围内有意义,则的取值范围是( )A. B. C. D.3、(4分)下列各式中属于最简二次根式的是( ).A. B. C. D.4、(4分)若关于的一元二次方程通过配方法可以化成的形式,则的值不可能是 A.3 B.6 C.9 D.105、(4分)如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为( )A.6cm B.12cm C.18cm D.24cm6、(4分)已知y是x的一次函数,下表中列出了部分对应值:x-101y1m-1则m等于( )A.-1 B.0 C. D.27、(4分)如图,函数和的图象相交于点,则不等式的解集为( )A. B. C. D.8、(4分)下面四张扑克牌其中是中心对称的是( )A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=_____.10、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.11、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______12、(4分)数据2,0,1,9的平均数是__________.13、(4分)一直角三角形的两条直角边分别是4cm和3cm,则其斜边上中线的长度为 ___________.三、解答题(本大题共5个小题,共48分)14、(12分)已知x、y满足方程组,求代数式的值.15、(8分)某学校打算招聘英语教师。
对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由16、(8分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,AD=12,DC=1.(1)证明:△ADF≌△AB′E;(2)求线段AF的长度.(3)求△AEF的面积.17、(10分)观察下列各式:①,②;③,…(1)请观察规律,并写出第④个等式: ;(2)请用含n(n≥1)的式子写出你猜想的规律: ;(3)请证明(2)中的结论.18、(10分)(1)已知,,求的值.(2)若,求的平方根.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABCD中,,,CB在数轴上,点C表示的数是,若以点C为圆心,对角线CA的长为半径作弧交数轴的正半轴于点P,则点P表示的数是______.20、(4分)如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.21、(4分)已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是____.22、(4分)因式分解:m2n+2mn2+n3=_____.23、(4分)如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.25、(10分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a、b,斜边为c)可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明.26、(12分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为多少人,扇形统计图中A部分的圆心角是多少度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.【详解】解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AC,∴∠C=∠EDB,又∵AB=AC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴DF+DE=AE+BE,∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,故选:B.本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.2、A【解析】根据分式有意义的条件即可求出答案.【详解】由分式有意义的条件可知:x-1≠0,∴x≠1,故选A.考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3、B【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A. =可化简,错误; B. 是最简二次根式 ,正确; C. =,可化简,错误; D. =,可化简,错误.故选B.本题考查了最简二次根式,解题的关键是掌握判断最简二次根式的两个条件:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4、D【解析】方程配方得到结果,即可作出判断.【详解】解:方程,变形得:,配方得:,即,,即,则的值不可能是10,故选:.此题考查了解一元二次方程配方法,熟练掌握完全平方公式是解本题的关键.5、C【解析】设屏幕上图形的高度xcm,为根据相似三角形对应高的比等于相似比可得 ,解得x=18cm,即屏幕上图形的高度18cm,故选C.6、B【解析】由于一次函数过点(-1,1)、(1,-1),则可利用待定系数法确定一次函数解析式,然后把(0,m)代入解析式即可求出m的值.【详解】设一次函数解析式为y=kx+b,把(−1,1)、(1,−1)代入解得,所以一次函数解析式为y=−x,把(0,m)代入得m=0.故答案为:B.此题考查待定系数法求一次函数解析式,解题关键在于运用一次函数图象上点的坐标特征求解m.7、A【解析】以交点为分界,结合图象写出不等式的解集即可.【详解】因为点A的坐标为,看函数图象,当的图象在的图像上方时,,此时故选:A.此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.8、B【解析】根据中心对称图形的概念即可求解【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合,难度一般.二、填空题(本大题共5个小题,每小题4分,共20分)9、-3【解析】点P(m+2,2m+1)向右平移1个单位长度后 ,正好落在y轴上,则 10、y=−x【解析】分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;【详解】若△BOC∽△DOA.则 即 所以AD= ,若△BOC∽△ODA,可得AD=8(与题意不符,舍去)设直线OD解析式为y=kx,则3=−k,即k=− ,直线OD的解析式为y=−x;此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.11、1【解析】利用向量的三角形法则直接求得答案.【详解】如图:∵-==且||=1,∴||=1.故答案为:1.此题考查了平面向量,属于基础题,熟记三角形法则即可解答.12、1【解析】根据算术平均数的定义计算可得.【详解】数据2,0,1,9的平均数是=1,故答案是:1.考查算术平均数,解题的关键是掌握算术平均数的定义.13、cm【解析】【分析】先利用勾股定理求出直角三角形的斜边长,然后再根据直角三角形斜边中线的性质进行解答即可.【详解】直角三角形的斜边长为:=5cm,所以斜边上的中线长为:cm,故答案为:cm.【点睛】本题考查了勾股定理、直角三角形斜边中线,熟知直角三角形斜边中线等于斜边的一半是解题的关键.三、。