2020年(机械制造行业)机械相关专业术语

上传人:管****问 文档编号:132940006 上传时间:2020-05-22 格式:DOC 页数:21 大小:313.07KB
返回 下载 相关 举报
2020年(机械制造行业)机械相关专业术语_第1页
第1页 / 共21页
2020年(机械制造行业)机械相关专业术语_第2页
第2页 / 共21页
2020年(机械制造行业)机械相关专业术语_第3页
第3页 / 共21页
2020年(机械制造行业)机械相关专业术语_第4页
第4页 / 共21页
2020年(机械制造行业)机械相关专业术语_第5页
第5页 / 共21页
点击查看更多>>
资源描述

《2020年(机械制造行业)机械相关专业术语》由会员分享,可在线阅读,更多相关《2020年(机械制造行业)机械相关专业术语(21页珍藏版)》请在金锄头文库上搜索。

1、(机械制造行业)机械相关专业术语弹性极限代号:e;单位:MPa(或N/mm2)简介:指金属材料受外力(拉力)到某一限度时,若除去外力,其变形(伸长)即消失而恢复原状,弹性极限即指金属材料抵抗这一限度的外力的能力,如果继续使用拉力扩大,就会使这个物体产生塑性变形,直至断裂(拿圆棒拉伸试样来说,随着拉力增加,圆棒样产生弹性变形;拉力超过弹性极限,圆棒样开始发生颈缩现象;拉力继续增加直至抗拉极限,圆棒样断裂)。材料做拉伸试验时,应力与应变将呈现一函数关系,而当应力达到某一值,材料将不会自行恢复原状,此一应力值,称为弹性限度。若材料塑承受的应力小于弹性限度,则可以自行恢复原状弹性极限在应力除遗留任何永

2、久变形的条件下,材料能承受的最大应力,用公斤/厘米2帕表示注:在实际测量应变时,往往采用小负荷而不用零负荷作为最终或最初的参考负荷。屈服强度科技名词定义中文名称:屈服强度英文名称:yieldstrength定义:材料开始产生宏观塑性变形时的应力。所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)本内容由全国科学技术名词审定委员会审定公布目录一、概要二、屈服强度标准三、影响屈服强度的因素四、屈服强度的工程意义编辑本段一、概要材料拉伸的应力-应变曲线yieldstrength又称为屈服极限,是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(

3、2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。有些钢材(如高碳钢)无明显的屈

4、服现象,通常以发生微量的塑性变形(0.2)时的应力作为该钢材的屈服强度,称为条件屈服强度(yieldstrength)。首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)建筑钢材以屈服强度作为设计应力的依据。所谓屈服,是指达到一定的变形应力之后,金属开始从弹性状态非均匀的向弹-塑性状态过度,它标志着宏观塑性变形的开始。编辑本段二、屈服强度标准建设工程上常用的屈服标准有三种:1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用p表示,超过p时即认为材料开始屈服。2、弹性极限试样加载后再卸载,

5、以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以Rel表示。应力超过Rel时即认为材料开始屈服。3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。编辑本段三、影响屈服强度的因素影响屈服强度的内在因素有:结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在

6、这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。影响屈服强度的外在因素有:温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。编辑本段四、屈服强度的工程意义-传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力=ys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度

7、为标准,规定许用应力=b/n,安全系数n一般取6。需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。-屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。强度极限符号:b(下标);单位:MPa(或N/mm2)出现于拉伸曲线SB阶段,构件在外力作用下进一步发生形变.是保持构件机械强度下能承受的最大应力.强度极限;ultimate

8、strength物体在外力作用下发生破坏时出现的最大应力,也可称为破坏强度或破坏应力。一般用标称应力来表示。根据应力种类的不同,可分为拉伸强度(t)、压缩强度(c)、剪切强度(s)等。断裂韧度科技名词定义中文名称:断裂韧度英文名称:fracturetoughness定义1:含裂纹的构件抵抗裂纹失稳扩展的能力。所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)定义2:在线弹性断裂力学中材料抵抗裂纹扩展的能力。所属学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科)本内容由全国科学技术名词审定委员会审定公布在弹塑性条件下,当应力场强度因

9、子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力,是材料的力学性能指标。金属材料泊松比定义在弹性范围内,金属丝沿长度方向伸长时,径向尺寸缩小,反之亦然。即轴向应变E与径向应变Er存在下列关系:Er=-uE式中u就是金属材料的泊松比。泊松泊松(Poisson,Simeon-Denis)(17811840),法国数学家。弹性模量科技名词定义中文名称:弹性模量英文名称:elasticmodulus定义:材料在弹性变形阶段内,正应力和对应的正应变的比值。所属学科:水利科技(一级学科);工程力学、工程结构、建筑材

10、料(二级学科);工程力学(水利)(三级学科)本内容由全国科学技术名词审定委员会审定公布百科名片材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。目录定义意义:说明:弹性模量:编辑本段定义拼音:tanxingmoliang英文名称:ElasticModulus,一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除

11、以应变。例如:线应变对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应变就等于杨氏模量E=(F/S)/(dL/L)剪切应变对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=(f/S)/a体积应变对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:K=P/(-dV/V)编辑本段意义:弹性模

12、量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。编辑本段说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J

13、表示。拉伸试验中得到的屈服极限s和强度极限b,反映了材料对力的作用的承受能力,而延伸率或截面收缩率,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中A0为零件的横截面积。由上式可见,要想提高零件的刚度EA0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆

14、件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。在弹性范围内大多数材料服从胡克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。弹性模量在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米2表示。编辑本段弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。弹性模量E=2.06e11Pa=206GPa(e11表示10的11次方)它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。1兆帕(

15、MPa)=145磅/英寸2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm)1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米2(kg/cm2)=0.987大气压(atm)1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar)抗拉强度科技名词定义中文名称:抗拉强度英文名称:tensilestrength定义1:材料在拉伸断裂前所能够承受的最大拉应力。所属学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)定义2:岩体、土体在单向受拉条件下,破坏时的最大拉应力。所属学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科)定义3:抵抗土体裂断时的强度。所

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 经营企划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号