《2019年高考数学试卷(浙江)(解析卷)》由会员分享,可在线阅读,更多相关《2019年高考数学试卷(浙江)(解析卷)(23页珍藏版)》请在金锄头文库上搜索。
1、2019年普通高等学校招生全国统一考试(浙江卷)数学参考公式:若事件互斥,则 若事件相互独立,则 若事件在一次试验中发生的概率是,则次独立重复试验中事件恰好发生次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,则(UA)B()A. B. C. D. 【答案】A【解析】【分析】本题借根据交集、补集的定
2、义可得.容易题,注重了基础知识、基本计算能力的考查.【详解】,则【点睛】易于理解集补集的概念、交集概念有误.2.渐近线方程为的双曲线的离心率是( )A. B. 1C. D. 2【答案】C【解析】【分析】本题根据双曲线的渐近线方程可求得,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为,所以,则,双曲线的离心率.【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.3.若实数满足约束条件,则的最大值是( )A. B. 1C. 10D. 12【答案】C【解析】【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤
3、可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以为顶点的三角形区域(包含边界),由图易得当目标函数经过平面区域的点时,取最大值.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.4.祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理可以得到柱体体积公式,其中是柱体的底面积,是柱体的高,若某柱体的三视图如图所示,则该柱体的体积是( )A. 158B. 162C. 182D. 32【答案】B【解析】【分析】本题首先
4、根据三视图,还原得到几何体棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为.【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.若,则“”是 “”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊
5、值法”,通过特取值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.6.在同一直角坐标系中,函数且的图象可能是( )A. B. C. D. 【答案】D【解析】【分析】本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推
6、理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.7.设,则随机变量的分布列是:则当在内增大时( )A. 增大B. 减小C. 先增大后减小D. 先减小后增大【答案】D【解析】【分析】研究方差随变化的增大或减小规律,常用方法就是将方差用参数表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为的二次函
7、数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.【详解】方法1:由分布列得,则,则当在内增大时,先减小后增大.方法2:则故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.8.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )A. B. C. D. 【答案】B【解析】【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过
8、明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,即,综上所述,答案为B.方法2:由最小角定理,记的平面角为(显然)由最大角定理,故选B.法2:(特殊位置)取为正四面体,为中点,易得,故选B.【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.9.已知,函数,若函数恰有三个零点,则( )A. B. C. D. 【答案】D【解析】【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想
9、及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析.【详解】原题可转化为与,有三个交点.当时,且,则(1)当时,如图与不可能有三个交点(实际上有一个),排除A,B(2)当时,分三种情况,如图与若有三个交点,则,答案选D下面证明:时,时,则,才能保证至少有两个零点,即,若另一零点在【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.10.设,数列中,a1=a,an+1=an2+b, ,则( )A. 当B. 当C. 当D. 当【答案】A【解析】【分析】本题综合性较强,注重重要知识、基础
10、知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B:不动点满足时,如图,若,排除如图,若为不动点则选项C:不动点满足,不动点为,令,则,排除选项D:不动点满足,不动点为,令,则,排除.选项A:证明:当时,处理一:可依次迭代到;处理二:当时,则则,则.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论的可能取值,利用“排除法”求解.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.复数(为虚数单位),则_.【答案】【解析】【分析】本题先计算,而后求其模.或
11、直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【详解】.【点睛】本题考查了复数模的运算,属于简单题.12.已知圆的圆心坐标是,半径长是.若直线与圆相切于点,则_,_.【答案】 (1). (2). 【解析】【分析】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线的斜率,进一步得到其方程,将代入后求得,计算得解.【详解】可知,把代入得,此时.【点睛】:解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.13.在二项式的展开式中,常数项是_;系数为有理数的项的个数是_.【答案】 (1). (2). 【解析】【分析】本题主要考查二项式定理、
12、二项展开式的通项公式、二项式系数,属于常规题目.从写出二项展开式的通项入手,根据要求,考察的幂指数,使问题得解.【详解】的通项为可得常数项为,因系数为有理数,有共5个项【点睛】此类问题解法比较明确,首要的是要准确记忆通项公式,特别是“幂指数”不能记混,其次,计算要细心,确保结果正确.14.中,点在线段上,若,则_;_.【答案】 (1). (2). 【解析】【分析】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.通过引入,在、中应用正弦定理,建立方程,进而得解.【详解】在中,正弦定理有:,而,,所以.【点睛】解答解三角形问题,要注意充分利用图形特征.15.已知椭圆
13、的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.【答案】【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示考点圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.16.已知,函数,若存在,使得,
14、则实数的最大值是_.【答案】【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究入手,令,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得,使得令,则原不等式转化为存在,由折线函数,如图只需,即,即的最大值是【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.17.已知正方形的边长为1,当每个取遍时,的最小值是_;最大值是_.【答案】 (1). 0 (2). 【解析】【分析】本题主要考查平面向量的应用,题目难度较大.从引入“基向量”入手,简化模的表现形式,利用转化与化归思想将问题逐步简化.【详解】要使的最小,只需要,此时只需要取此时等号成立当且仅当均非负或者均非正,并且均非负或者均非正。比如则.点睛:对于此题需充分利用转化与化归思想,从“基向量”入手,最后求不等式最值,是一道向量和不等式的综合题。【点睛】对于平面向量的应用问题,需充分利用转化与化归思想、数形结合思想.三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤.18.设函数.(1)已知函数是偶函数,求的值;(2)求函数 的值