文档详情

神奇有趣的莫比乌斯环

新**
实名认证
店铺
PPT
2.92MB
约30页
文档ID:592446159
神奇有趣的莫比乌斯环_第1页
1/30

神奇的莫比乌斯带?神奇的莫比乌斯带?2021/3/111 何何谓谓点点线线面面点点是一幅图像最基本的组成,是图像中最细小的成份它占有长度及阔度中最基本的等分,并占有画面中最细小的面积各类型的点2021/3/112 线条是由很多的点沿着相同的方向,紧密地排列在一起所形成线有长度,但只有很细小的阔度,是占有面积的它可以指示方向及位置,并形成面的边缘,为面框上范围线是点移动时所经过的轨迹由点所组成的线条2021/3/113 面是当很多线条往同一方向不断重复,并紧贴在一起,就会形成一幅有面积的面面有长度及阔度,但只有极微细的高度面是体的基本单元,面的组合及连接会形成体,或组成形状线的拼合所组成的面2021/3/114 What Is What Is 莫比乌斯带?莫比乌斯带? 莫比乌斯带(Möbius strip或者Möbius band),又译梅比斯环或麦比乌斯带,是一种拓扑学结构,它只有一个面(表面),和一个边界它是由德国数学家、天文学家莫比乌斯(August Ferdinand Möbius)和约翰·李斯丁(Johhan Benedict Listing)在1858年独立发现的。

这个结构可以用一个纸带旋转半圈再把两端粘上之后轻而易举地制作出来2021/3/115 事实上有两种不同的莫比乌斯带镜像,他们相互对称如果把纸带顺时针旋转再粘贴,就会形成一个右手性的莫比乌斯带,反之亦类似莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早2021/3/116 事实上,莫比乌斯很有趣,因为不断的剪下去,那么就会越来越细,越来越大圈,好像做兰州拉面那带么有趣,莫比乌斯的拓朴学意义运用在设计里,有一个很重要的概念,就是经过这种倒8字型的现像,内外都成了同一个面,如果一只蚂蚁沿着莫比乌斯爬行,那么里里外外,都爬在同一个面上2021/3/117 莫比乌斯带的制作?莫比乌斯带的制作?莫比乌斯(Mobius)是一位德国教师,公元1790年出生,1868年去世他提出了一种很特别的数学性质,这项数学性质就以他的名字来命名,称为“莫比乌斯环”莫比乌斯环”最特殊的性质就是:它只有单面,没有内外这个性质听起来很不可思议,不妨自己动手做做看。

制作的方法如下:拿一条大约40厘米长,3厘米宽的纸条,将纸条的两端接在一起,形成一个纸环,但是先不要黏贴2021/3/118 接着,把纸条的一端扭转一百八十度,再用胶水把纸条的两端黏起来,这样,就可以做出一个莫比乌斯环了你可以拿出一枝彩色笔,从莫比乌斯环上的某一点出发,沿着环面一直画下去,不要让彩色笔离开纸面(代表彩色笔都在同一面上移动),最后可以发现,彩色笔又回到了原本的起点这就说明了:莫比乌斯环真的只有一面!2021/3/119 有有趣趣的的莫莫比比乌乌斯斯带带??问题:在莫比乌斯环的中间(最好是相当于纸环宽度的一半),沿着环带画线,让它回到原点,再拿一把剪刀,沿着你画的这条线把纸环剪开,看看会产生什么结果?做做看,你将会有惊人的发现哦! 2021/3/1110 莫比乌斯带的惊奇莫比乌斯带的惊奇l实验一:从纸的正中央画一条线,沿着这条线剪下来会出现什么结果呢?结果是:(1)拿一张长条纸带(2)将纸带扭转180度再黏起来2021/3/1111 (3)从纸带的中间绕着剪(4)剪开后,就变成了一个环了且剪开后的环长度是原来的两倍,宽度是原来的一半2021/3/1112 (5)将纸带的三等分后再绕着剪(6)剪开后,就变成了二个环了,一个大环一个小环,大环长度是原来的两倍,宽度是原来的一半。

2021/3/1113 (6)将纸带的四等分后再绕着剪(7)剪开后,就变成了二个大环,长度是原来的两倍,宽度是原来 的一半8)五等分=二等分+三等分;六等分=三等分+三等分以此类推、、、2021/3/1114 实验二:做一个莫比乌斯带,沿着距离右侧的三分之ㄧ之宽的位置画线,直到回到出发点为止,然后沿着这条线剪开会出现什么结果呢?答案是:(1)画一条距离右侧三分之ㄧ的线 (2)剪开后,是两个连在一起的环而这两个环中较大的环长度是原来的两倍,另外一个较小的长度和原来的一样,不过两个纸环的宽度都是原来的三分之ㄧ2021/3/1115 莫莫比比乌乌斯斯带带的的应应用用??莫比乌斯环的发明,为人类的生活带来了很大的方便---莫比乌斯环最大的特点只有一面及只有一莫比乌斯环最大的特点只有一面及只有一边1.应用一:传统点阵式计算机报表打印机或上班打卡机(打印时会发出嘎!嘎!嘎!的声音)的印表色带,如果用一般的接合方式,色带只能用一面;以莫比乌斯环方式接合的色带,两面都能派上用场呢!还有工程用的滑轮也是采用这种方式连接,这样不但皮带两面的耗损比较平均,也可以延长使用寿命哦!2021/3/1116 2.应用二:回路式录音带(大带,这种早日成为历史),也是用这原理设计的;它的磁带有四个音轨,立体声只用两个音轨,每次都读取1,3音轨,音乐放完一轮,录音带事实已走了二趟了,下图为大匣录音带循环方式,左方拉出,右方盘回。

3.应用三:莫比乌斯环在空间上的应用2021/3/1117 一、哈萨克斯坦共和国国家图书馆一、哈萨克斯坦共和国国家图书馆设计打破传统,莫比乌斯环的结构设计可以在同样平面中通过不同角度的“空间扭曲”而让原有的空间在不同方向得以“延伸”,获得更多的可用空间让墙壁在不同的角度变化化,时而是墙,时而是屋顶,时而成了地板,最后又变成了墙 “2021/3/1118 二二、、中中国国凤凤凰凰卫卫视视位位于于北北京京的的新新总总部部大大楼楼整个建筑呈面包圈状,辉映了凤凰卫视两只凤凰盘旋交织的标识,同时类似《莫比乌斯环》的设计很好地诠释了阴阳概念2021/3/1119 三三、、台台湾湾台台中中国国立立公公共共信信息息图图书书馆馆外体建筑由知名建筑师潘翼所设计,融入莫比乌斯环与周遭的城市线条打造建筑与知识的流动美学意象,以及尊重地景融入、都市肌理2021/3/1120 破解莫比乌斯环的谜团破解莫比乌斯环的谜团 ■引人入“环”——荷兰艺术家埃斯沙的作品引入莫比乌斯环的概念,令参观者视线久久不能离开法新社) 英国伦敦大学两名科学家表示 已破解历时近80年的莫比乌斯环 谜团,莫比乌斯环是一种拓朴学 结构,其结构图形为艺术家带来 灵感,荷兰艺术家埃斯沙的著名 木刻画作品便用此结构。

 2021/3/1121 莫比乌斯环是用一条长纸带,纸带有内外两面,将纸带旋转半圈,再把纸带两端同一面,面对面贴在一起成一个环;由于纸带扭转,外面也是内面,内面也是外面 自1930年以来,这个环的特质一直困扰力学家,欲以代数方程式解释其独特的形态伦敦大学两名科学家海登和史达诺斯汀公布破解了莫比乌斯环谜团,他们表示决定莫比乌斯环的形状取决于其不同的“能量密度”区域 2021/3/1122 能量密度是指纸带扭弯后所蕴含的弹性能量,纸带最弯曲之处,含最大的能量密度相反,纸带最平直之处含最少能量密度如果纸带的宽度与长度成正比地增加,能量密度区会转移,改变了环的形状结果,他们用方程式解释了破解的方法两人又表示有关研究亦有实际用途,如有助预计布料的撕裂点,也可用于计算新药的结构模型许森)  2021/3/1123 传递情感的莫比乌斯带?传递情感的莫比乌斯带?【爱你一万年 】(INFINITY)(DVD)马修鲍德瑞克 派翠西亚艾奎特主演根据真人真事改编,描写对费曼性格形成影响最大的人,包括他的父亲和他的初恋情人阿琳。

2021/3/1124 【爱你一万年 】---这是费曼写他和他第一任太太阿琳的故事阿琳对他的影响又是什么?可以看《你管别人怎么想》一书第二章〈你管别人怎么想〉一一张张纸纸也也可可能能只只有有一一面面?? 费曼跟阿琳都是那一种很在乎自己的感觉,自己想什么、不去介意别人的人他俩常喜欢辩论,有一次他跟阿琳辩论,阿琳就跟他说我们老师说,像一张纸一样所有的事情都有两面?2021/3/1125 费曼就说不见得,有时候一张纸只有一面,那阿琳说怎么回事呢?他就做了一张,费曼就把它折过来贴在一起,就是黑面贴白面,贴成之后就会像一个像这样子的成为一个面(这就是莫比乌斯环Mobius Strip),从白色的部分一直走…走到最后你会走到黑色的部分,黑色部分再继续走…走到最后会走到白色的部分,所以他证明跟阿琳说一件事情也可能只有一面,一张纸也可能只有一面,然后阿琳就很高兴,拿回去跟大学的老师说你说错了,费曼就靠这个追到他的第一任的老婆阿琳,因为阿琳觉得费曼跟她是同类的人,他们之间有一种秘密的语言2021/3/1126 影片的无限延伸l问题与讨论:1.这部片名叫 《INFINITY(无限大)》,在这部片子里,Infinity有哪些意涵? 2.费曼将纸条黏成一个环 show给女友,这个环有什么性质或意义,让他女友很兴奋?3.影片中有哪些情境演到《你管别人怎么想》这句话或这个概念?l心得报告:看完这部电影(当然你还可能看一些和费曼有关的书或资料),你有什么心得?或得到哪些启示?或知道了哪些你原来不知道的东西?(至少要写500字以上) 2021/3/1127 莫比乌斯环的游戏莫比乌斯环的游戏------双人脱困游戏双人脱困游戏市面上或网络上有一些小游戏或魔术,都和莫比乌斯环有关l在下图中,如果不解开手腕上的绳结, 不破坏、剪断绳子下,怎样帮助他们 脱困?将这一对男女分开呢?找一个 周遭的同伴一起动手操作试试看!l延伸:找出“双人脱困”游戏的原理, 并从中探讨三人、四人…等脱困的规律 及应用。

2021/3/1128 Puzzle !!!Puzzle !!!(仙人穿梭)设法将两个分别放置在两端的圆环,放在同一端,在下图中,最初在位置A的金属环能否被移往位置B的地方呢?如果可以,该怎么移动?用块厚纸板钻几个洞,作个玩具试试延伸:“仙人穿梭”游戏所使用的原理与如何利用此原理制作更复杂的仙人穿梭问题并应用 在生活中 2021/3/1129 橡皮筋魔术橡皮筋魔术------橡皮筋穿越( (美国枷锁) )将橡皮筋套在食指与中指,手指弯曲握拳再伸直,橡皮筋就被移到无名指与小指延伸:探讨橡皮筋魔术的原理,并利用此原理创作更多橡皮筋魔术2021/3/1130 。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档