液压挖掘机的半自动控制系统论文

上传人:ni****g 文档编号:548747100 上传时间:2023-08-23 格式:DOC 页数:15 大小:5.90MB
返回 下载 相关 举报
液压挖掘机的半自动控制系统论文_第1页
第1页 / 共15页
液压挖掘机的半自动控制系统论文_第2页
第2页 / 共15页
液压挖掘机的半自动控制系统论文_第3页
第3页 / 共15页
液压挖掘机的半自动控制系统论文_第4页
第4页 / 共15页
液压挖掘机的半自动控制系统论文_第5页
第5页 / 共15页
点击查看更多>>
资源描述

《液压挖掘机的半自动控制系统论文》由会员分享,可在线阅读,更多相关《液压挖掘机的半自动控制系统论文(15页珍藏版)》请在金锄头文库上搜索。

1、液压挖掘机的半自动控制系统Hirokazu Araya ,Masayuki Kagoshima日本机械工程研究实验室Kobe Steel, Ltd., Nishi-ku, Kobe Hyogo 651 2271,2000年7月27日 摘要开发出了一种应用于液压挖掘机的半自动控制系统。采用该系统,即使是不熟练的操作者也能容易和精确地操控液压挖掘机。构造出了具有控制器的液压挖掘机的精确数学控制模型,同时通过模拟实验研发出了其控制算法,并将其应用在液压挖掘机上,由此可以估算出它的工作效率。依照此法,可通过正反馈及前馈控制、非线性补偿、状态反馈和增益调度等各种手段获得较高的控制精度和稳定性能。自然杂志

2、2001 版权所有关键词:施工机械;液压挖掘机;前馈;状态反馈;操作 1引言 液压挖掘机,被称为大型铰接式机器人,是一种施工机械。采用这种机器进行挖掘和装载操作,要求司机要具备高水平的操作技能,即便是熟练的司机也会产生相当大的疲劳。另一方面,随着操作者年龄增大,熟练司机的数量因而也将会减少。开发出一种让任何人都能容易操控的液压挖掘机就非常必要了1-5。 液压挖掘机之所以要求较高的操作技能,其理由如下。1.液压挖掘机的操作,至少有两个操作手柄必须同时操作并且要协调好。2.操作手柄的动作方向与其所控的臂杆组件的运动方向不同。例如,液压挖掘机的反铲水平动作,必须同时操控三个操作手柄(动臂,斗柄,铲斗

3、)使铲斗的顶部沿着水平面(图1)运动。在这种情况下,操作手柄的操作表明了执行元件的动作方向,但是这种方向与工作方向不同。如果司机只要操控一个操作杆,而其它自由杆臂自动的随动动作,操作就变得非常简单。这就是所谓的半自动控制系统。开发这种半自动控制系统,必须解决以下两个技术难题。1. 自动控制系统必须采用普通的控制阀。2. 液压挖掘机必须补偿其动态特性以提高其控制精度。现已经研发一种控制算法系统来解决这些技术问题,通过在实际的液压挖掘机上试验证实了该控制算法的作用。而且我们已采用这种控制算法,设计出了液压挖掘机的半自动控制系统。具体阐述如下。2液压挖掘机的模型为了研究液压挖掘机的控制算法,必须分析

4、液压挖掘机的数学模型。液压挖掘机的动臂、斗柄、铲斗都是由液压力驱动,其模型如图2所示。模型的具体描述如下。2.1 动态模型6 假定每一臂杆组件都是刚体,由拉格朗日运动方程可得以下表达式: 其中 g是重力加速度;i铰接点角度;i是提供的扭矩;li组件的长度;lgi转轴中心到重心之距;mi组件的质量;Ii是重心处的转动惯量(下标i=1-3;依次表示动臂,斗柄,铲斗)。2.2 挖掘机模型 每一臂杆组件都是由液压缸驱动,液压缸的流量是滑阀控制的,如图3所示。可作如下假设: 1.液压阀的开度与阀芯的位移成比例。 2.系统无液压油泄漏。 3.液压油流经液压管道时无压力损失。4.液压缸的顶部与杆的两侧同样都

5、是有效区域。在这个问题上,对于每一臂杆组件,从液压缸的压力流量特性可得出以下方程:当 时;其中,Ai是液压缸的有效横截面积;hi是液压缸的长度;Xi是滑芯的位置;Psi是供给压力;P1i是液压缸的顶边压力;P2i是液压缸的杆边压力;Vi是在液压缸和管道的油量;Bi是滑阀的宽度;是油的密度;K是油分子的黏度;c是流量系数。2.3 连杆关系 在图1所示模型中,液压缸长度改变率与杆臂的旋转角速度的关系如下:(1)动臂 (2)斗柄 (3)铲斗 当 时,2.4 扭矩关系 从2.3节的连杆关系可知,考虑到液压缸的摩擦力,提供的扭矩i如下 其中,Cci是粘滞摩擦系数;Fi是液压缸的动摩擦力。2.5 滑阀的反

6、应特性 滑阀动作对液压挖掘机的控制特性产生会很大的影响。因而,假定滑阀相对参考输入有以下的一阶延迟。其中,是滑芯位移的参考输入;是时间常数。3 角度控制系统 如图4所示,角基本上由随动参考输入角通过位置反馈来控制。为了获得更精确的控制,非线性补偿和状态反馈均加入位置反馈中。以下详细讨论其控制算法。3.1 非线性补偿 在普通的自动控制系统中,常使用如伺服阀这一类新的控制装置。在半自动控制系统中,为了实现自控与手控的协调,必须使用手动的主控阀。这一类阀中,阀芯的位移与阀的开度是非线性的关系。因此,自动控制操作中,利用这种关系,阀芯位移可由所要求的阀的开度反推出来。同时,非线性是可以补偿的(图5)。

7、3.2 状态反馈建立在第2节所讨论的模型的基础上,若动臂角度控制动态特性以一定的标准位置逼近而线性化(滑芯位移X 10,液压缸压力差P 110,动臂夹角 10),则该闭环传递函数为其中,Kp是位置反馈增益系数; 由于系统有较小的系数a1,所以反应是不稳定的。例如,大型液压挖掘机SK-16中。X10是0,给出的系数a0=2.710,a1=6.010,a2=1.210.加上加速度反馈放大系数Ka,因而闭环(图4 的上环)的传递函数就是加入这个因素,系数S就变大,系统趋于稳定。可见,利用加速度反馈来提高反应特性效果明显。但是,一般很难精确的测出加速度。为了避免这个问题,改用液压缸力反馈取代加速度反馈

8、(图4的下环)。于是,液压缸力由测出的缸内的压力计算而滤掉其低频部分7,8。这就是所谓的压力反馈。4 伺服控制系统 当一联轴器是手动操控,而其它的联轴器是因此而被随动作控制时,这必须使用伺服控制系统。例如,如图6所示,在反铲水平动作控制中,动臂的控制是通过保持斗柄底部Z(由1与2计算所得)与Zr 的高度。为了获得更精确的控制引入以下控制系统。4.1 前馈控制由图1计算Z,可以得到将方程(8)两边对时间求导,得到以下关系式, 右边第一个式子看作是表达式(反馈部分)将替换成1,右边第二个式子是表达式(前馈部分)计算当2手动地改变时,1的改变量。实际上,用不同的2值可确定1。通过调整改变前馈增益Kf

9、f,可实现最佳的前馈率。采用测量斗柄操作手柄的位置(如角度)取代测斗柄的角速度,因为驱动斗柄的角速度与操作手柄的位置近似成比例。4.2 根据位置自适应增益调度 类似液压挖掘机的铰接式机器人,其动态特性对位置非常敏感。因此,要在所有位置以恒定的增益稳定的控制机器是困难的。为了解决这个难题,根据位置的自适应增益调度并入反馈环中(图6)。如图7所示,自适应放大系数(KZ或K)作为函数的两个变量,2和Z 、2表示斗柄的伸长量,Z是表示铲斗的高度。5 模拟实验结论反铲水平动作控制的模拟实验是将本文第4节所描述的控制算法用在本文第2节所讨论的液压挖掘机的模型上。(在SK-16大型液压挖掘机进行模拟实验。)

10、图8表示其中一组结果。控制系统启动5秒以后,逐步加载扰动。图9表示使用前馈控制能减少控制错误的产生. 6 半自动控制系统 建立在模拟实验的基础上,半自动控制系统已制造出来,应用在SK-16型挖掘机上试验。通过现场试验可验证其操作性。这一节将讨论该控制系统的结构与功能。6.1 结构 图10的例子中,控制系统由控制器、传感器、人机接口和液压系统组成。 控制器是采用16位的微处理器,能接收来自动臂、斗柄、铲斗传感器的角度输入信号,控制每一操作手柄的位置,选择相应的控制模式和计算其实际改变量,将来自放大器的信号以电信号形式输出结果。液压控制系统控制产生的液压力与电磁比例阀的电信号成比例,主控阀的滑芯的

11、位置控制流入液压缸液压油的流量。 为获得高速度、高精度控制,在控制器上采用数字处理芯片,传感器上使用高分辨率的磁编码器。除此之外,在每一液压缸上安装压力传感器以便获得压力反馈信号。 以上处理后的数据都存在存储器上,可以从通信端口中读出。6.2 控制功能控制系统有三种控制模式,能根据操作杆和选择开关自动切换。其具体功能如下。 (1)反铲水平动作模式:用水平反铲切换开关,在手控斗柄推动操作中,系统自动的控制斗柄以及保持斗柄底部的水平运动。在这种情况下,当斗柄操作杆开始操控时,其参考位置是从地面到斗柄底部的高度。对动臂操作杆的手控操作能暂时中断自动控制,因为手控操作的优先级高于自动控制。 (2)铲斗

12、水平举升模式:用铲斗水平举升切换开关,在手控动臂举升操作中,系统自动控制铲斗。保持铲斗角度等于其刚开始举升时角度以阻止原材料从铲斗中泄漏。(3)手控操作模式:当既没有选择反铲水平动作模式,也没有选择铲斗水平举升模式时,动臂,斗柄,铲斗都只能通过手动操作。 系统主要采用C语言编程来实现这些功能,以构建稳定模组提高系统的运行稳定性。7 现场试验结果与分析 通过对系统进行现场试验,证实该系统能准确工作。核实本文第3、4节所阐述的控制算法的作用,如下所述。7.1 单个组件的自动控制测试对于动臂、斗柄、铲斗每一组件,以5的梯度从最初始值开始改变其参考角度值,测量其反应,从而确定第3节所描述的控制算法的作

13、用。7.1.1 非线性补偿的作用图11 表明动臂下降时的测试结果。因为电液系统存在不灵敏区,当只有简单的位置反馈而无补偿时(图11中的关)稳态错误仍然存在。加入非线性补偿后(图11中的开)能减少这种错误的产生。7.1.2 状态反馈控制的作用 对于斗柄和铲斗,只需位置反馈就可获得稳定响应,但是增加加速度或压力反馈能提高响应速度。以动臂为例,仅只有位置反馈时,响应趋向不稳定。加入加速度或压力反馈后,响应的稳定性得到改进。例如,图12表示动臂下降时,采用压力反馈补偿时的测试结果。 7.2 反铲水平控制测试 在不同的控制和操作位置下进行控制测验,观察其控制特性,同时确定最优控制参数(如图6所示的控制放大系数)。7.2.1 前馈控制作用在只有位置反馈的情况下,增大放大系数Kp,减少Z错误,引起系统不稳定,导致系统延时,例如图13所示的“关”,也就是Kp不能减小。采用第4.1节所描述的斗柄臂杆前馈控制能减少错误而不致于增大Kp。如图示的“开”。7.2.2 位置的补偿作用当反铲处在上升位置或者反铲动作完成时,反铲水平动作趋于不稳定。不稳定振荡可根据其位置改变放大系数Kp来消除,如第4.2节所讨论的。图14 表示其作用,表明反铲在离地大约2米时水平

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 外语文库 > 韩语学习

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号