《黔江区高中2018-2019学年上学期高二数学12月月考试题含解析》由会员分享,可在线阅读,更多相关《黔江区高中2018-2019学年上学期高二数学12月月考试题含解析(13页珍藏版)》请在金锄头文库上搜索。
1、黔江区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在长方体ABCDA1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是( )ABCD 2 圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力3 设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的( )A必要不充分条件B充分不必要条件C充分必要条件D既不充分也不必要条件4 若圆柱、圆锥的底面直径和高都等于
2、球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3B2:3:4C3:2:4D3:1:25 已知直线 平面,直线平面,则( ) A B与异面 C与相交 D与无公共点6 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D137 命题:“x0,都有x2x0”的否定是( )Ax0,都有x2x0Bx0,都有x2x0Cx0,使得x2x0Dx0,使得x2x08 已知函数f(x)=,则的值为( )ABC2D39 双曲线=1(mZ)的离心率为( )AB2CD310在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=
3、1Dx=11双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD12设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是( )A10B40C50D80二、填空题13(sinx+1)dx的值为14【泰州中学2018届高三10月月考】设函数是奇函数的导函数,当时,则使得成立的的取值范围是_15某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.16如图所示22方格
4、,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有种(用数字作答)ABCD17某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)18已知f(x),g(x)都是定义在R上的函数,g(x)0,f(x)g(x)f(x)g(x),且f(x)=axg(x)(a0且a1),+=若数列的前n项和大于62,则n的最小值为三、解答题19(本小题满分10分)选修4-4:
5、坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.20已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由21设A=,,集合(1)求的值,并写出集合A的所有子集; (2)若集合,且,求实数的值。22在ABC中,角A,B,C所对的边分别为a,b,c已知
6、b2+c2=a2+bc()求A的大小;()如果cosB=,b=2,求a的值23已知复数z=m(m1)+(m2+2m3)i(mR)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围24已知ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求ABC的面积黔江区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:如图,设A1C1B1D1=O1,B1D1A1O1,B1D1AA1,B1D1平面AA1O1,故平面AA1O1面AB1D1,交线为AO1,在面AA1O1内过B1作B1
7、HAO1于H,则易知A1H的长即是点A1到截面AB1D1的距离,在RtA1O1A中,A1O1=,AO1=3,由A1O1A1A=hAO1,可得A1H=,故选:C【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题2 【答案】C3 【答案】B【解析】解:bm,当,则由面面垂直的性质可得ab成立,若ab,则不一定成立,故“”是“ab”的充分不必要条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键4 【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2R3圆锥的
8、体积V圆锥=故圆柱、圆锥、球的体积的比为2R3: =3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键5 【答案】D【解析】试题分析:因为直线 平面,直线平面,所以或与异面,故选D.考点:平面的基本性质及推论.6 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题7 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:x0,
9、使得x2x0,故选:C【点评】本题主要考查含有量词的命题 的否定,比较基础8 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A9 【答案】B【解析】解:由题意,m240且m0,mZ,m=1双曲线的方程是y2x2=1a2=1,b2=3,c2=a2+b2=4a=1,c=2,离心率为e=2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b210【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()
10、=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题11【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A12【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的xk的系数,将k的值代入求出各种情况的系数【解答】解:(x+2)5的展开式中xk的系数为C5k25k当k1时,C5k25k=C5124=80,当k=2时,C5k25k=C5223=80,当k=3时,C5k25k=C5322=40,当k=4时,C5k25k=C542=10
11、,当k=5时,C5k25k=C55=1,故展开式中xk的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数二、填空题13【答案】2 【解析】解:所求的值为(xcosx)|11=(1cos1)(1cos(1)=2cos1+cos1=2故答案为:214【答案】【解析】15【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种
12、设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.16【答案】27 【解析】解:若A方格填3,则排法有232=18种,若A方格填2,则排法有132=9种,根据分类计数原理,所以不同的填法有18+9=27种故答案为:27【点评】本题考查了分类计数原理,如何分类是关键,属于基础题17【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础18【答案】1 【解析】解:x为实数,x表示不超过x的最大整数,如图,当x0,1)时,画出函数f(x)=xx的图象,再左右扩展知f(x)为周期函数结合图象得到函数f(x)=xx的最小正周期是1故答案为:1【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用三、解答题19【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标