《蔬菜大棚温度湿度自动控制系统设计-毕业设计论文》由会员分享,可在线阅读,更多相关《蔬菜大棚温度湿度自动控制系统设计-毕业设计论文(42页珍藏版)》请在金锄头文库上搜索。
1、 学号 毕业设计(论文)题目:蔬菜大棚温度湿度自动控制系统设计作 者 届 别 届 院 别 信息与通信工程学院 专 业 自 动 化 指导教师 职 称 教 授 完成时间 年 月 日 湖南理工学院毕业设计论文摘 要蔬菜大棚温度湿度自动控制系统由主控制器AT89C51单片机、并行口扩展芯片8255、74LS373、A/D转换器0809、湿度传感器、温度传感器DS1820、固态继电器、RAM6264、掉电保护和LED显示器和报警电路等构成,实现对蔬菜大棚温湿度的检测与控制,从而有效提高蔬菜的产量。文中提出了具体设计方案,讨论了蔬菜大棚温湿度巡回检测与控制的基本原理,进行了可行性论证。给出了电路图和程序流
2、程图并附有源程序。由于利用了单片机及数字控制系统的优点,系统的各方面性能得到了显著的提高。关键词:温湿度传感器;湿度传感器;快速检测;A/D转换器;LED显示器;报警电路;固态继电器;ABSTRACT Vegetables canopy temperature and humidity automatic control system consists of the main controller AT89C51 single-chip, parallel port expansion chip 8255,74 LS373 and A/D converter 0809, humidity se
3、nsor, the temperature sensor, solid-state relay, the DS1820 RAM6264, power fail safeguard and leds display and alarm circuit, etc .To achieve the vegetable greenhouse temperature and humidity testing and control, to improve the vegetables production.In this paper, the specific design, discussed the
4、detection of vegetable greenhouses temperature and humidity and circuit control principle, carried out a feasibility demonstration.Schematic diagram is given together with source code and procedures.The use of the MCU and the advantages of digital control system, all aspects of the system performanc
5、e is significantly improved.Keywords: temperature and humidity sensors; Humidity sensors; Rapid detection; A/D converter; The LED display; Alarm circuit; Solid state relays.目 录摘 要1ABSTRACT2目 录31 概述41.1 温室计算机控制的概况42 系统的硬件组成电路设计62.1 系统的硬件组成框图62.1.1 系统的工作原理62.2 系统主控制器部分设计62.2.1 AT89C51的工作原理62.2.2 AT89C
6、51的复位电路82.2.3 AT89C51的引脚功能82.3 数据存储器的扩展102.4 LED显示器132.5 A/D转换接口142.5.1 A/D转换器的基本工作原理及器件简介142.5.2 ADC0809与AT89C51单片机的接口设计163 单总线接口183.1 单总线芯片的硬件结构183.2 单总线芯片的供电183.3 单总通信的ROM命令184 单总线数字温度传感器DS1820和湿度检测电路204.1DS1820 的主要特性204.2DS1820 内部结构204.3 DS1820的工作原理214.4 DS1820使用中注意事项214.5 湿度检测电路224.6 报警电路225 系统
7、的软件设计245.1 设计方法245.2 主程序的分析与说明246 结 论25致 谢26参考文献27附 录281 概述1.1 温室计算机控制的概况温室环境测控,即根据植物生长发育的需要,自动调节温室内环境条件的总称。现代化温室,通过传感器技术、微型计算机及单片机技术和人工智能技术,能自动测控温室的环境,其中包括温度、湿度、光照、C02浓度等,使作物在不适宜生长发育的反季节中,获得比室外生长更优的环境条件,达到早熟、优质、高产的目的。在农业种植问题中,温室环境与生物的生长、发育、能量交换密切相关,进行环境测控是实现温室生产管理自动化、科学化的基本保证,通过对监测数据的分析,结合作物生长发育规律,
8、控制环境条件,达到作物优质、高产、高效盼栽培目的。传统的环境测控管理采用模拟控制仪表和人工管理方法,工作效率低。随着微机技术的发展,逐步采用配置灵活、开放式结构、运算能力较强、高可靠性、完善的开发手段及具有数据处理、统计分析、打印报表等功能的测控系统所代替,取得了较好的经济效益。随着国民经济的迅速增长,现代农业得到长足发展,受控农业的研究和应用技术越来越受到重视,特别是温室工程已成为工厂化高效农业的一个重要组成部分。支持温室工程的相关技术,如温室环境复杂系统的建模技术与专家决策支持系统、温室环境智能测控技术研究与系统开发、温室环境调配工程技术与设施研究等已成为当前该领域的关键技术和研究热点问题
9、。研究温室环境信息进行模拟、分析、预测,研究开发基于作物成长栽培环境的温室环境多因子智能化综合测控系统,研究高效生产的温室环境综合测控模式与配套设施等将是今后主要研究内容。目前,我国农业正处在从传统农业向以优质、高效、高产为目的的现代化农业转化的新阶段。农业环境控制工程作为农业生物速生、优质、高产手段是农业现代化的标志,农业设施的自动检测与控制是我国急待发展的项目。应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一。近年来电子技术和信息技术的飞速发展,带来了温室控制与管理技术方面的一场革命,随着“设施农业”、“虚拟农业”等新名称的出现,“设施园艺”、“虚拟温室”的概
10、念也应运而生。温室计算机控制与管理系统正在不断吸收自动控制和信息管理领域新的理论和方法,结合温室作物种植的特点,不断创新,逐步完善,从而使温室种植业实现真正意义上的现代化、产业化。国内外温室计算机控制技术的发展状况计算机的发展最早可以追溯到上个世纪的40年代,但将计算机用于环境控制则开始于20世纪60年代。20世纪80年代初诞生了第一批温室控制计算机,此后温室计算机控制及管理技术便先是在发达国家得到广泛应用,后来各发展中国家也都纷纷引进、开发出适合自己的系统。这在给各国带来巨大的经济效益的同时,也极大地推动了各国农业的现代化进程。 温度监测预警系统是针对蔬菜大棚温度监测而设计,同时也可用于粮食
11、仓储、冷库及烟叶发酵等场合的温度监测。塑料大棚是开发日光资源、充分利用太阳光能的主要形式之一,能避光、增产、保湿,为蔬菜生长创造一个良好环境。蔬菜大棚作为一个相对封闭的环境,其内部形成了一个小气候环境,良好的空气环境是蔬菜正常生长的重要条件。为了增产、增收,要注意大棚内部的气体、温度和湿度3个重要因素。气体主要是指棚内的二氧化碳的含量。当空气中的二氧化碳浓度提高到0.1%时,可使蔬菜的光合作用速率增加 1 倍以上,增产20%80%;若使二氧化碳浓度降至0.005%时,光合作用几乎停止。蔬菜生长的适宜温度为 2030。大棚内白天增温快,当棚外平均气温为 15时,棚内可达 4050。因此,要适时调
12、节棚内温度,避免高温危害。塑料大棚经常处于密闭状态,蒸发量大大减小,内部湿度一般在80%90%,湿度过大极易导致病虫害的发生。现在对大棚内气体、温度和湿度的有效调节,主要是通过适时的通风来实现。二氧化碳含量过大和湿度过大都会导致温度升高。通过调节温度可以有效地控制二者的浓度。因此,对棚内温度的控制是非常重要的。本文介绍的分布式单总线蔬菜大棚温度监测预警系统,采用全数字化设计,直接监测每个棚内不同部分的温度,通过对温度的良好控制,有效地提高蔬菜的产量。2 系统的硬件组成电路设计2.1 系统的硬件组成框图本系统为一个全自动的蔬菜大棚温湿度巡回检测与控制系统,由以下几部分组成:AT89C51单片机,
13、温湿度传感器,8255并行口电路A/D转换器变送器,驱动电路报警和显示电路组成,其接口部分包括单片机外扩展的数据存储器6264一片和地址锁存器74LS373,系统的组成如图1-1所示:图1-1 硬件组成框图2.1.1 系统的工作原理在应用程序的作用下,首先对8255进行初始化,设定工作方式0。PA口PB口PC口均为输出口,PA口PB口为显示输出,PC口为报警和相关设备驱动口。由于工艺决定,进大棚之前已经将湿度控制在安全限以内,测量过程是先温度后湿度的顺序,首先对温度进行采样,每一个温度点采样5次,计算平均值作为采样值送入显示和存储的相应单元进行存储和传感器的编号和温度的显示,然后判断温度是否超
14、过设定温度,如果温度超标则报警并根据传感器的位置判断启动通风设备还是加热设备,如果不超标就继续检测下一个点的温度,知道整个大棚的多个点温度全部测试完成,然后计算和显示大棚的平均温度,然后对8个点的湿度进行测量并且显示,也是按照每个点测量5次然后取平均值的方法计算,来减少干扰因素带来的误差,8个点的湿度测量完成后计算并显示大棚的平均湿度。同样与设定的湿度值比较如果超标就报警,并启动风扇进行通风处理。然后系统返回再进行温度和湿度的巡回测量和显示。2.2 系统主控制器部分设计2.2.1 AT89C51的工作原理 1 CPU的结构 CPU是单片机内部的核心部分,是单片机的指挥和执行机构,它决定了单片机
15、的主要功能特性。从功能上看,CPU包括两个基本部分:运算器和控制器。下面说明控制器和运算器。 1)运算器 运算器包括算术逻辑运算部件ALU、累加器ACCC、B寄存器、暂存寄存器TMP1和TMP2、程序状态寄存器PSW、BCD码运算调整电路等。 2)时钟电路AT89C51芯片内部有一个高增益反向放大器,用于构成振荡器。反向放大器的输入端为XTAL1,输出端为XTAL2。在TXAL1和XTAL2两端跨接由石英晶体及两个电容构成的自激振荡器,如图2-1所示。电容器C1和C2通常都取30pF左右,选用不同的电容量对振荡频率有微调作用。但石英晶体本身的标定频率才是单片机振荡频率的决定因素。其振荡频率范围是112MHz。图2-1 时钟电路本设计考虑系统的独立完整性,选用内部时钟方式,石英震荡频率选用12MHZ,ALE信号频率为