《算法设计与分析复习题目及答案75555.doc》由会员分享,可在线阅读,更多相关《算法设计与分析复习题目及答案75555.doc(26页珍藏版)》请在金锄头文库上搜索。
1、分治法1、二分搜索算法是利用(分治策略)实现的算法。9. 实现循环赛日程表利用的算法是(分治策略 )27、Strassen矩阵乘法是利用(分治策略)实现的算法。34实现合并排序利用的算法是(分治策略 )。实现大整数的乘法是利用的算法(分治策略 )。17实现棋盘覆盖算法利用的算法是(分治法 )。29、使用分治法求解不需要满足的条件是(子问题必须是一样的 )。不可以使用分治法求解的是(0/1背包问题 )。动态规划下列不是动态规划算法基本步骤的是( 构造最优解 )下列是动态规划算法基本要素的是(子问题重叠性质 )。下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
2、( 动态规划法 )最长公共子序列算法利用的算法是(动态规划法 )。矩阵连乘问题的算法可由(动态规划算法B)设计实现。实现最大子段和利用的算法是(动态规划法 )。贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。回溯法回溯法解旅行售货员问题时的解空间树是( 排列树 )。剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素( 确定解空间的时间)分支限界法最大效益优先是(分支界限法 )的一搜索方式。分支限界法解最大团问题时,活结点表的组织形式是(
3、最大堆 )。分支限界法解旅行售货员问题时,活结点表的组织形式是( 最小堆 )优先队列式分支限界法选取扩展结点的原则是( 结点的优先级 )在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法 ).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法 )之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。 (2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。(最优子结构性质)是贪心算法与动态规划算法的共同点。 贪心算法与动态
4、规划算法的主要区别是(贪心选择性质 )。回溯算法和分支限界法的问题的解空间树不会是( 无序树 ).14哈弗曼编码的贪心算法所需的计算时间为(B )。A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)21、下面关于NP问题说法正确的是(B )A NP问题都是不可能解决的问题B P类问题包含在NP类问题中C NP完全问题是P类问题的子集D NP类问题包含在P类问题中40、背包问题的贪心算法所需的计算时间为(B )A、O(n2n) B、O(nlogn) C、O(2n) D、O(n)420-1背包问题的回溯算法所需的计算时间为(A )A、O(n2n)B、O(nlogn)C、O(2n)D、O
5、(n).47.背包问题的贪心算法所需的计算时间为(B )。A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)53采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 ( B ) 。A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)56、算法是由若干条指令组成的有穷序列,而且满足以下性质( D )(1) 输入:有0个或多个输入(2) 输出:至少有一个输出(3) 确定性:指令清晰,无歧义(4) 有限性:指令执行次数有限,而且执行时间有限 A (1)(2)(3) B(1)(2)(4) C(1)(3)(4) D (1) (2)(3)(4)
6、57、函数32n+10nlogn的渐进表达式是( B ).A. 2n B. 32n C. nlogn D. 10nlogn59、用动态规划算法解决最大字段和问题,其时间复杂性为( B ).A.logn B.n C.n2 D.nlogn61、设f(N),g(N)是定义在正数集上的正函数,如果存在正的常数C和自然数N0,使得当NN0时有f(N)Cg(N),则称函数f(N)当N充分大时有下界g(N),记作f(N)(g(N),即f(N)的阶( A )g(N)的阶.A.不高于 B.不低于C.等价于 D.逼近二、 填空题 2、程序是 算法用某种程序设计语言的具体实现。3、算法的“确定性”指的是组成算法的每
7、条 指令 是清晰的,无歧义的。6、算法是指解决问题的 一种方法 或 一个过程 。7、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 。11、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步。14、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是 动态规划 ,需要排序的是 回溯法 ,分支限界法 。15、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题
8、。 30.回溯法是一种既带有 系统性 又带有 跳跃性 的搜索算法。 33回溯法搜索解空间树时,常用的两种剪枝函数为 约束函数 和 限界函数 。34.任何可用计算机求解的问题所需的时间都与其 规模 有关。35.快速排序算法的性能取决于 划分的对称性 。36. Prim算法利用 贪心 策略求解 最小生成树 问题,其时间复杂度是 O(n2) 。37. 图的m着色问题可用 回溯 法求解,其解空间树中叶子结点个数是 mn ,解空间树中每个内结点的孩子数是 m 。4.若序列X=B,C,A,D,B,C,D,Y=A,C,B,A,B,D,C,D,请给出序列X和Y的一个最长公共子序列 BABCD或CABCD或CA
9、DCD。5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解 8.0-1背包问题的回溯算法所需的计算时间为_o(n*2n)_,用动态规划算法所需的计算时间为_o(minnc,2n_。二、综合题(50分)1.写出设计动态规划算法的主要步骤。问题具有最优子结构性质;构造最优值的递归关系表达式;3最优值的算法描述;构造最优解;2. 流水作业调度问题的johnson算法的思想。令N1=i|ai=bi;将N1中作业按ai的非减序排序得到N1,将N2中作业按bi的非增序排序得到N2;N1中作业接N2中作业就构成了满足Johnson法则的最优调度。3. 若n=4,在机器M1和M
10、2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。步骤为:N1=1,3,N2=2,4;N1=1,3, N2=4,2;最优值为:384. 使用回溯法解0/1背包问题:n=3,C=9,V=6,10,3,W=3,4,4,其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。解空间为(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),
11、(1,1,1)。解空间树为:ABCFEDGKJIHONML11100001011010该问题的最优值为:16 最优解为:(1,1,0)5. 设S=X1,X2,Xn是严格递增的有序集,利用二叉树的结点来存储S中的元素,在表示S的二叉搜索树中搜索一个元素X,返回的结果有两种情形,(1)在二叉搜索树的内结点中找到X=Xi,其概率为bi。(2)在二叉搜索树的叶结点中确定X(Xi,Xi+1),其概率为ai。在表示S的二叉搜索树T中,设存储元素Xi的结点深度为Ci;叶结点(Xi,Xi+1)的结点深度为di,则二叉搜索树T的平均路长p为多少?假设二叉搜索树Tij=Xi,Xi+1,Xj最优值为mij,Wij=
12、 ai-1+bi+bj+aj,则mij(1=i=j=n)递归关系表达式为什么?二叉树T的平均路长P=+ mij=Wij+minmik+mk+1j (1=i=jj)6. 描述0-1背包问题。已知一个背包的容量为C,有n件物品,物品i的重量为Wi,价值为Vi,求应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。三、简答题(30分)1.流水作业调度中,已知有n个作业,机器M1和M2上加工作业i所需的时间分别为ai和bi,请写出流水作业调度问题的johnson法则中对ai和bi的排序算法。(函数名可写为sort(s,n))2.最优二叉搜索树问题的动态规划算法(设函数名binarysearch
13、tree))1.void sort(flowjope s,int n) int i,k,j,l; for(i=1;i=n-1;i+)/-选择排序 k=i; while(kn) break;/-没有ai,跳出 else for(j=k+1;jsj.a) k=j; swap(si.index,sk.index); swap(si.tag,sk.tag); l=i;/-记下当前第一个bi的下标 for(i=l;i=n-1;i+) k=i; for(j=k+1;j=n;j+) if(sk.bsj.b) k=j; swap(si.index,sk.index); /-只移动index和tag swap(si.tag,sk.tag); 2.void binarysearchtree(int a,int b,int n,int *m,int *s,int *w) int i,j,k,t,l; for(i=1;i=n+1;i+