《2021年全国高考乙卷数学(文)试题(解析版)》由会员分享,可在线阅读,更多相关《2021年全国高考乙卷数学(文)试题(解析版)(17页珍藏版)》请在金锄头文库上搜索。
1、2021年高考全国统一考试(文科数学)一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知全集,集合,则( )A. B. C. D. 【答案】A【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:,则.故选:A.2. 设,则( )A. B. C. D. 【答案】C【解析】【分析】由题意结合复数的运算法则即可求得z的值.【详解】由题意可得:.故选:C.3. 已知命题命题,则下列命题中为真命题的是( )A. B. C. D. 【答案】A【解析】【分析】由正弦函数的有界性确定命题的真假性,由指数函数的知识确定命题的真假性
2、,由此确定正确选项.【详解】由于,所以命题为真命题;由于在上为增函数,所以,所以命题为真命题;所以为真命题,、为假命题.故选:A4. 函数的最小正周期和最大值分别是( )A. 和B. 和2C. 和D. 和2【答案】C【解析】【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,所以的最小正周期为,最大值为.故选:C5. 若满足约束条件则的最小值为( )A. 18B. 10C. 6D. 4【答案】C【解析】【分析】由题意作出可行域,变换目标函数为,数形结合即可得解.详解】由题意,作出可行域,如图阴影部分所示,由可得点,转换目标函数为,上下平移直线,数形结
3、合可得当直线过点时,取最小值,此时.故选:C.6. ( )A. B. C. D. 【答案】D【解析】【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.【详解】由题意,.故选:D.7. 在区间随机取1个数,则取到的数小于的概率为( )A. B. C. D. 【答案】B【解析】【分析】根据几何概型的概率公式即可求出.【详解】设“区间随机取1个数”,对应集合为: ,区间长度为,“取到的数小于”, 对应集合为:,区间长度为,所以故选:B8. 下列函数中最小值为4的是( )A. B. C. D. 【答案】C【解析】【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,
4、即可得出不符合题意,符合题意【详解】对于A,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,函数定义域为,而且,如当,D不符合题意故选:C9. 设函数,则下列函数中为奇函数的是( )A. B. C. D. 【答案】B【解析】【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,定义域不关于原点对称,不是奇函数;对于D,定义域不关于原点对称,不是奇函数.故选:B10
5、. 在正方体中,P为的中点,则直线与所成的角为( )A. B. C. D. 【答案】D【解析】【分析】平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.【详解】如图,连接,因为,所以或其补角为直线与所成的角,因为平面,所以,又,所以平面,所以,设正方体棱长为2,则,所以.故选:D11. 设B是椭圆上顶点,点P在C上,则的最大值为( )A. B. C. D. 2【答案】A【解析】【分析】设点,由依题意可知,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值【详解】设点,因为,所以,而,所以当时,的最大值为故选:A12. 设,若为函数的极大值点,则( )A. B. C
6、. D. 【答案】D【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.二、填空题:本题共4小题,每小题5分,共20分13. 已知向
7、量,若,则_【答案】【解析】【分析】利用向量平行充分必要条件得到关于的方程,解方程即可求得实数的值.【详解】由题意结合向量平行的充分必要条件可得:,解方程可得:.故答案为:.14. 双曲线右焦点到直线的距离为_【答案】【解析】【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,所以双曲线的右焦点为,所以右焦点到直线的距离为.故答案为:15. 记的内角A,B,C的对边分别为a,b,c,面积为,则_【答案】【解析】【分析】由三角形面积公式可得,再结合余弦定理即可得解.【详解】由题意,所以,所以,解得(负值舍去).故答案为:.16. 以图为正视图,在图中选两个分别作为侧视图和俯视
8、图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_(写出符合要求的一组答案即可)【答案】(答案不唯一)【解析】【分析】由题意结合所给图形确定一组三视图的组合即可.【详解】选择侧视图为,俯视图为,如图所示,长方体中,分别为棱的中点,则正视图,侧视图,俯视图对应的几何体为三棱锥.故答案为:.三、解答题共70分解答应写出文字说明,证明过程或演算步骤,第1721题为必考题,每个试题考生都必须作答第22、23题为选考题,考生根据要求作答(一)必考题:共60分17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产
9、品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和(1)求,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高)【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.【解析】【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的
10、结论进行判断.【详解】(1),.(2)依题意,所以新设备生产产品的该项指标的均值较旧设备有显著提高.18. 如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积【答案】(1)证明见解析;(2)【解析】【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;(2)由(1)可知,由平面知识可知,由相似比可求出,再根据四棱锥的体积公式即可求出【详解】(1)因为底面,平面,所以,又,所以平面,而平面,所以平面平面(2)由(1)可知,平面,所以,从而,设,则,即,解得,所以因为底面,故四棱锥的体积为19. 设是首项为1
11、的等比数列,数列满足已知,成等差数列(1)求和的通项公式;(2)记和分别为和的前n项和证明:【答案】(1),;(2)证明见解析.【解析】【分析】利用等差数列的性质及得到,解方程即可;利用公式法、错位相减法分别求出,再作差比较即可.【详解】因为是首项为1的等比数列且,成等差数列,所以,所以,即,解得,所以,所以.(2)证明:由(1)可得,得 ,所以,所以,所以.20. 已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.【答案】(1);(2)最大值为.【解析】【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知
12、识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线的斜率的最大值为.21. 已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标【答案】(1)答案见解析;(2) 和.【解析】【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可
13、求得公共点坐标.【详解】(1)由函数的解析式可得:,导函数的判别式,当时,在R上单调递增,当时,的解为:,当时,单调递增;当时,单调递减;当时,单调递增;综上可得:当时,在R上单调递增,当时,在,上单调递增,在上单调递减. (2)由题意可得:,则切线方程为:,切线过坐标原点,则:,整理可得:,即:,解得:,则,切线方程为:,与联立得,化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,该方程可以分解因式为解得,,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.(二)选考题:共10分请考生在第22、23题中任选一题作答如果多做则按所做的第一题计分选修4-4:坐标系与参数方程22. 在直角坐标系中,的圆心为,半径为1(1)写出的一个参数方程;(2)过点作的两条切线以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程【答案】(1),(为参数);(2)或.【解析】【分析】(1)直接利用圆心及半径可得的圆的参数方程;(2)先求得过(4,1)的圆的切线方程,再利用极坐标与直角坐标互化公式化简即可.【详解】(1)由题意,的普通方程为,所以的参数方程为,(为参数)(2)由题意,切线的斜率一定存在,设切线方程为,即,由圆心到直线的距离等于1可得,解得,所以切线方程为或,将,代入化简得或选修45:不等式选讲23. 已知函数(1)当时,求不等式的解集