轧钢生产线液压系统介绍学习资料

上传人:人*** 文档编号:420607538 上传时间:2023-07-23 格式:DOC 页数:29 大小:11.97MB
返回 下载 相关 举报
轧钢生产线液压系统介绍学习资料_第1页
第1页 / 共29页
轧钢生产线液压系统介绍学习资料_第2页
第2页 / 共29页
轧钢生产线液压系统介绍学习资料_第3页
第3页 / 共29页
轧钢生产线液压系统介绍学习资料_第4页
第4页 / 共29页
轧钢生产线液压系统介绍学习资料_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《轧钢生产线液压系统介绍学习资料》由会员分享,可在线阅读,更多相关《轧钢生产线液压系统介绍学习资料(29页珍藏版)》请在金锄头文库上搜索。

1、第一章 介质系统基础知识2250项目的介质系统主要包括如下几个部分:高压除鳞水系统、液压系统、气动系统、稀油润滑系统、干油润滑系统、氮气添加装置和废油、新油中央存储设备。介质系统分布于整条热轧线的从加热炉到地下卷取机的各个区域设备中,对于整条热轧生产线的正常、可靠、安全运行起着至关重要的作用。在介质系统的几个部分中,液压系统是最具代表性的系统,其他系统的主要工作原理都可以由液压系统来推演、转化出来。因此,这里主要以液压系统作为代表对介质系统的一些基础知识作一下简单的介绍。1.1 液压系统简介如图1-1和1-2所示,为一个简化了的工作台往复运动的液压系统。从图中可以看出,液压系统包括1、油箱2、

2、过滤器3、液压泵4、溢流阀5、手动换向阀6、节流阀7、换向阀8、液压缸等元件以及连接这些元件的管路。液压泵3由电动机驱动,从油箱1中吸油,其输出的压力油在图1-1所示的状态下流经手动换向阀5节流阀6换向阀7进入液压缸8的左腔。液压缸8的活塞在压力油的推动下经活塞杆带动工作台右行。这时液压缸右腔的油液经换向阀7流回油箱。当工作台右行至其左档块10碰到换向阀操作杆11时,换向阀阀芯12就被向左拉,成为图1-2所示状态。此时压力油经过换向阀7后进入液压缸的右腔,工作台反向左行,液压缸8左腔的油液经过换向阀7流回油箱。此后,当工作台左行至其右档块9碰到换向阀的操作杆11时,换向阀阀芯12又会被拉回到右

3、位,液压系统恢复到图1-1的状态,工作台又向右移动。如此循环动作,实现了往复运动。液压系统中节流阀6的通流面积是可调的,通过调节通流面积可以调节通过节流阀的流量,从而使流入液压缸的油液流量改变,这样就实现了工作台往复速度的调节。由于节流阀通流面积可以无级调节,因此也可以实现工作台速度的无级调节。当用节流阀6调节进入液压缸的流量时,从液压泵输出的压力油除了通过节流阀6输向液压缸以外,其多余的流量通过溢流阀4流回油箱。因为只有当溢流阀进口处的压力升高到能够克服溢流阀4中的弹簧预调压力时,此阀才被打开而让油液流回油箱。当溢流阀被开启并维持一定的溢流量时,其进口处的油液压力保持在溢流阀的预调压力值上。

4、所以,溢流阀在溢流时起到了控制油液压力的作用。当工作台需要停止时,拨动手动换向阀5的手柄13,使阀处于左位,状态如图1-3所示。此时液压泵输出的油液直接经过手动换向阀5流回油箱。 图1-11-3是用半结构图形式来表示的液压系统工作原理图,它虽然直观、易于理解,但是绘制比较麻烦。为了简化作图,一般液压系统都采用职能符号式的液压原理图。在这种原理图中,各种液压元件都用符号表示,这些符号只表示元件的职能,连接系统的通路,不表示其具体结构,因此这种原理图比较简洁。我国制定的液压系统图形符号标准为GB786-76。图1-4即为职能符号表示的图1-3所示的液压系统。从上面的例子可以看出,液压系统可以分成以

5、下四个主要组成部分:1. 能源装置。它是把机械能转换成液压油压力能的装置,它的主要形式是液压泵。2. 执行装置。它是把液压油的压力能装化为机械能的装置。主要有液压缸和液压马达。(用压力来驱动的马达).3. 控制调节装置。它们是控制液压系统中油液压力、流量和方向的装置,主要有各种压力阀、流量阀和方向阀。4. 辅助装置。它们是除了上述三项以外的其它装置,比如油箱、蓄能器、密封圈、过滤器、管路、管接头、加热器、冷却器、空气滤清器、液位计等等。下面分别介绍各种液压元件。1.2 能源装置:液压泵液压泵的主要作用是把电动机或其他动力装置输入的机械能转换为油液的压力能。它是液压系统的心脏。液压泵的基本工作原

6、理是使液压油充满在密闭的工作容积内,在工作中依靠密闭容积的变化来输送液压油。当容积由小变大时吸油,由大变小时排油。液压泵的种类很多,按照结构形式常见的有齿轮泵、叶片泵和柱塞泵。柱塞泵又可以分为轴向柱塞泵和径向柱塞泵。按照输出流量是否可调可以分为定量泵和变量泵,其中齿轮泵一般为定量泵,叶片泵和柱塞泵可以为变量泵,也可以为定量泵。按照它们允许使用的压力范围,可以分为低压泵、中压泵和高压泵。按照输出油液方向是否可以改变,又可分为单向泵和双向泵。常用的液压泵的职能符号如图1-5所示:(a)单向定量泵 (b)双向定量泵(c)单向变量泵 (d)双向变量泵图1-5 液压泵职能符号1.2.1 齿轮式液压泵在各

7、种液压泵中,齿轮泵由于结构简单、易于制造和维护而广泛应用于压力不高的液压系统中。比较有代表性的是外啮合渐开线直齿圆柱齿轮泵。其原理图如图1-6所示。图1-6 外啮合渐开线直齿圆柱齿轮泵原理图如图所示,装在壳体内的一对齿轮的齿顶圆柱及侧面均与壳体内壁接触,因此各个齿间槽间均形成密闭的工作空间。齿轮泵的内腔被互相啮合的齿轮分为左、右两个互不相通的内腔,分别与进油口和排油口相通。当齿轮按照图示方向旋转时,左侧吸油腔齿轮逐渐分离,工作空间的容积逐渐变大,形成部分真空,因此油箱中的油液在大气压的作用下,经吸油管进入吸油孔m。吸入的油液在密封的工作空间随齿轮旋转带到右侧的排油腔e。因为右侧的齿轮逐渐啮合,

8、工作空间容积逐渐减小,所以齿间的油也被挤出,从排油孔n排出进入系统。当齿轮不断旋转时,左右两腔不断完成吸油、排油过程,将压力油送到液压系统中。齿轮泵的立体图如图1-7所示,该齿轮泵为CB-B25型齿轮泵。图1-7 CB-B25型齿轮泵立体图1.2.2 叶片式液压泵叶片泵按每转吸排油的次数,可分为单作用式叶片泵和双作用式叶片泵两种。双作用叶片泵为定量泵,单作用叶片泵大多做成变量泵。叶片泵输出流量均匀,脉动小,噪声小,但结构复杂。1.2.2.1 YB1型双作用定量叶片泵YB1型双作用定量叶片泵工作原理如图1-8所示。转子4与定子5的中心重合,叶片3装在转子槽中,并可在槽内移动。当转子回转时,由于离

9、心力的作用(有时还在叶片槽底部通进压力油),使叶片紧贴靠在定子内壁,这样就形成了若干个密封容积。定子的内表面近似椭圆形,由两段长半径R的圆弧段CD、GH,两段短半径r的圆弧段AB、EF,以及四段过度曲线BC、DE、FG、HA所组成。叶片在AB、EF区域时,密封容积最小。当转子按照图示方向旋转,叶片在BC、FG区域中,密封容积逐渐增大,从两个吸油口b(与吸油口m相通)中吸油,称为吸油腔。叶片在CD、GH区域内时,密封容积最大。叶片在DE、HA区域内密封容积逐渐减小,称为压油腔,油液从压油窗口c(与压油口n相通)中排出。在吸油腔与压油腔之间有一段封油区,即AB、CD、EF、GH区域,把两腔隔开。这

10、种叶片泵的转子每转一圈,每个密封容积完成两次吸油和压油,故称为双作用叶片泵。该型号叶片泵立体图如图1-9所示。 图1-8 YB1型双作用定量叶片泵图1-9 YB1型双作用定量叶片泵立体图1.2.2.2 单作用变量叶片泵单作用叶片泵的工作原理如图1-10所示。定子具有圆柱形内表面,与转子间有偏心距e。当转子按照图示方向回转时,下半部叶片逐渐伸出,密封容积逐渐变大,从与吸油口m相通的吸油窗口a吸油,称为吸油腔。上班部叶片被定子内壁逐渐压进槽内,密封容积逐渐变小,称为压油腔,油液通过压油窗口b从压油口n中压出。这种叶片泵的转子每旋转一次,每个密封容积完成一次吸油和压油,所以称为单作用液压泵。若将转子

11、和定子的偏心距e做成可调节的,则变成变量叶片泵。其立体图如图1-11所示。 图1-10 单作用叶片泵原理图图1-11 单作用叶片泵立体图1.2.3 柱塞式液压泵柱塞泵是靠柱塞在缸体内部往复运动造成密封容积变化来实现吸油与压油的液压泵。由于柱塞与缸体内孔均为圆柱面,因此加工方便,配合精度高,密封性能好,结构紧凑,可以在高压下工作。同时这种液压泵只要改变柱塞的工作行程就能够改变流量,故很容易实现流量调节及液流方向的改变。柱塞泵按柱塞得排列和运动方向的不同,可以分为轴向柱塞泵和径向柱塞泵两大类。轴向柱塞泵是指柱塞轴线相互平行于缸体轴线的液压泵,它又分为斜盘式和斜轴式两种。1.2.3.1 斜盘式轴向柱

12、塞泵斜盘式轴向柱塞泵原理图如图1-12所示。柱塞2装在缸体3中,沿轴向圆周均匀分布。缸体中心具有花键轴孔,由内传动轴带动旋转。油液经过装在缸体右侧的配油盘4(图1-12中假想配油盘4向右移开,以表达缸体右端面形状)上的吸油窗口a进入缸内,使柱塞一端紧抵在一个与缸体及传动轴轴线成倾角的斜盘1上,配油盘和斜盘都固定不动。当缸体回转时,在低压油和斜盘作用下,柱塞就在缸中作往复直线运动。当缸体按图示方向转动时,在前半部分,柱塞从缸中伸出,这是低压油经配油盘窗口a吸入缸体孔内;在后半部分,柱塞被斜盘压进缸内,油液便经过压油窗口b压出。缸体每旋转一次,每一个柱塞完成一次吸油和压油,缸体连续旋转,就可以不断

13、输出压力油。该泵的斜盘带有手动调节装置,通过该装置调节斜盘的倾角,就可以改变其流量。角越大,流量越大。因此该泵是一种变量泵。该泵的立体图如图1-13所示。图1-12 斜盘式轴向柱塞泵原理图图1-13 斜盘式轴向柱塞泵立体图1.2.3.2 斜轴式轴向柱塞泵斜轴式轴向柱塞泵的基本工作原理与斜盘式轴向柱塞泵相同,但它是使缸体相对于传动轴倾斜一定角度,如图1-14所示。当传动轴2带动起右端的圆盘旋转时,通过连杆机构2带动缸体4绕其倾斜的轴线旋转,使柱塞3在缸体内作往复运动,通过配油盘5上的配油窗口完成吸油和排油的过程。改变缸体的倾角就可改变其流量。如果做成可调的,即成为一种变量泵。图1-14 斜轴式轴

14、向柱塞泵原理图图1-15 斜轴式轴向柱塞泵立体图1.2.4 径向柱塞泵径向柱塞泵是指柱塞轴线垂直或者大致垂直于泵体轴线的液压泵。其原理图如图1-16所示。柱塞2在弹簧3的作用下压在偏心轴1的外表面上,偏心轴1旋转时,柱塞便在缸体4内作往复运动。若偏心轴按顺时针方向旋转,当其与柱塞接触点的半径逐渐减小(如1-16(a),则柱塞向左运动,柱塞与缸体间的密封容积b逐渐增大而产生局部真空,油液在大气压力下打开低压单向阀芯6,从吸油口a进入缸体内,这时高压单向阀芯5在上面的弹簧作用下处于关闭位置。偏心轴继续旋转,当其与柱塞接触面间的半径逐渐变大时(如图1-16(b),柱塞向右运动,密封工作容积b逐渐减小

15、,油液被压,这时低压单向阀芯6关闭,油液不能从油口a倒流回油箱,便顶开上面的单向阀芯5。从油口c压出。偏心轴旋转一周,每个柱塞完成一次吸油和压油的过程。偏心轴连续旋转,泵就不断地输出压力油。图1-17为径向柱塞泵的立体图。图1-16 径向柱塞泵原理图图1-17 径向柱塞泵立体图1.3 执行装置:液压马达、液压缸液压系统的执行装置有两种:一是液压马达,一般将液压系统的压力能转换为机械装置旋转的机械能;二是液压缸,一般将液压系统的压力能转换为机械装置直线运动的机械能。1.3.1 液压马达一般来说,液压泵和液压马达从原理上讲是可逆的,有的液压泵和液压马达在结构上完全一样,它们可以互逆使用,即当它由电

16、动机带动旋转时为液压泵,当它同入压力油时便为液压马达。有些液压泵和液压马达虽然不能互逆使用,但是其结构也基本类同。在此仅举一个液压马达以了解其工作原理。液压马达的分类与液压泵的分类类似,按照结构形式常见的有齿轮式液压马达、叶片式液压马达和柱塞式液压马达。柱塞泵又可以分为轴向柱塞液压马达和径向柱塞液压马达。按照输出流量是否可调可以分为定量液压马达和变量液压马达,按照它们允许使用的压力范围,可以分为低压液压马达、中压液压马达和高压液压马达。按照输出油液方向是否可以改变,又可分为单向液压马达和双向液压马达。常用的液压马达职能符号如图1-18所示。图1-18 液压马达职能符号(a)单向定量液压马达 (b)双向定

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 销售管理

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号