高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题

上传人:不*** 文档编号:378485534 上传时间:2024-01-30 格式:DOCX 页数:10 大小:97.52KB
返回 下载 相关 举报
高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题_第1页
第1页 / 共10页
高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题_第2页
第2页 / 共10页
高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题_第3页
第3页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题》由会员分享,可在线阅读,更多相关《高考数学大一轮复习 9.5 抛物线及其性质精练-人教版高三数学试题(10页珍藏版)》请在金锄头文库上搜索。

1、9.5抛物线及其性质挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.抛物线及其标准方程1.了解抛物线的定义,并会利用定义解题2.掌握求抛物线标准方程的基本步骤(定型、定位、定量)和基本方法(定义法和待定系数法)2017课标,16抛物线的定义梯形的中位线2.抛物线的几何性质1.知道抛物线的简单几何性质(范围、对称性、顶点、离心率)2.能用其性质解决有关的抛物线问题,了解抛物线的一些实际应用2017天津文,12抛物线的准线直线与圆的位置关系3.抛物线中弦的相关问题1.理解并掌握抛物线中与焦点弦有关的性质与结论2.能解决抛物线中与弦有关的问题2018课标,16求焦点弦所在直线的

2、斜率直线与抛物线的位置关系分析解读从高考试题来看,抛物线的定义、标准方程、几何性质以及直线与抛物线的位置关系等一直是命题的热点,题型既有选择题、填空题,又有解答题;客观题突出“小而巧”的特点,主要考查抛物线的定义、标准方程,主观题考查得较为全面,除考查定义、性质之外,还考查直线与抛物线的位置关系,考查基本运算能力、逻辑思维能力和综合分析问题的能力,着力于数学思想方法的考查.破考点【考点集训】考点一抛物线及其标准方程1.(2016四川文,3,5分)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)答案D2.(2014安徽,3,5分)抛物线y=14x2的准线方

3、程是()A.y=-1B.y=-2C.x=-1D.x=-2答案A3.(2016浙江,9,4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.答案9考点二抛物线的几何性质4.(2017课标文,12,5分)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为()A.5B.22C.23D.33答案C5.(2014上海文,3,4分)若抛物线y2=2px的焦点与椭圆x29+y25=1的右焦点重合,则该抛物线的准线方程为.答案x=-2考点三抛物线中弦的相关问题6.(2014课标文,10,5分)设F为抛物线C

4、:y2=3x的焦点,过F且倾斜角为30的直线交C于A,B两点,则|AB|=()A.303B.6C.12D.73答案C7.(2017课标,10,5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.10答案A炼技法【方法集训】方法1求抛物线标准方程的方法1.已知抛物线C的开口向下,其焦点是双曲线y23-x2=1的一个焦点,则C的标准方程为()A.y2=8xB.x2=-8yC.y2=2xD.x2=-2y答案B2.已知抛物线C的焦点为F(0,1),则抛物线C的

5、标准方程为.答案x2=4y方法2解决直线与抛物线位置关系问题的方法3.(2017课标文,20,12分)设A,B为曲线C:y=x24上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AMBM,求直线AB的方程.解析(1)设A(x1,y1),B(x2,y2),则x1x2,y1=x124,y2=x224,x1+x2=4,于是直线AB的斜率k=y1-y2x1-x2=x1+x24=1.(2)由y=x24,得y=x2,设M(x3,y3),由题设知x32=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2

6、,2+m),|MN|=|m+1|.将y=x+m代入y=x24得x2-4x-4m=0.当=16(m+1)0,即m-1时,x1,2=22m+1.从而|AB|=2|x1-x2|=42(m+1).由题设知|AB|=2|MN|,即42(m+1)=2(m+1),解得m=7.所以直线AB的方程为y=x+7.过专题【五年高考】A组自主命题天津卷题组(2017天津文,12,5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若FAC=120,则圆的方程为.答案(x+1)2+(y-3)2=1B组统一命题、省(区、市)卷题组考点一抛物线及其标准方程1.(2016课标

7、文,5,5分)设F为抛物线C:y2=4x的焦点,曲线y=kx(k0)与C交于点P,PFx轴,则k=()A.12B.1C.32D.2答案D2.(2017课标,16,5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.答案6考点二抛物线的几何性质1.(2016课标,10,5分)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为()A.2B.4C.6D.8答案B2.(2015陕西文,3,5分)已知抛物线y2=2px(p0)的准线经过点(-1,1),则该抛物线焦点

8、坐标为()A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)答案B3.(2018北京文,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.答案(1,0)考点三抛物线中弦的相关问题1.(2018课标,16,5分)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若AMB=90,则k=.答案22.(2014湖南文,14,5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.答案(-,-

9、1)(1,+)3.(2016浙江,19,15分)如图,设抛物线y2=2px(p0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.解析(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得p2=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t0,t1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s0),由y2=4x,x=sy+1消去x得y2-4sy-4=

10、0,故y1y2=-4,所以,B1t2,-2t.又直线AB的斜率为2tt2-1,故直线FN的斜率为-t2-12t.从而得直线FN:y=-t2-12t(x-1),直线BN:y=-2t.所以Nt2+3t2-1,-2t.设M(m,0),由A,M,N三点共线得2tt2-m=2t+2tt2-t2+3t2-1,于是m=2t2t2-1.所以m2.经检验,m2满足题意.综上,点M的横坐标的取值范围是(-,0)(2,+).思路分析(1)利用抛物线的定义来解题;(2)由(1)知抛物线的方程,可设A点坐标及直线AF的方程,与抛物线方程联立可得B点坐标,进而得直线FN的方程与直线BN的方程,联立可得N点坐标,最后利用A

11、,M,N三点共线可得kAN=kAM,最终求出结果.评析本题主要考查抛物线的几何性质、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.C组教师专用题组考点一抛物线及其标准方程1.(2015浙江,5,5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则BCF与ACF的面积之比是()A.|BF|-1|AF|-1B.|BF|2-1|AF|2-1C.|BF|+1|AF|+1D.|BF|2+1|AF|2+1答案A2.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a

12、0)经过C,F两点,则ba=.答案1+23.(2012北京,12,5分)在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A,B两点,其中点A在x轴上方.若直线l的倾斜角为60,则OAF的面积为.答案3考点二抛物线的几何性质(2014辽宁文,8,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A.-43B.-1C.-34D.-12答案C考点三抛物线中弦的相关问题1.(2014四川文,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OAOB=2(其中O为坐标原点),则ABO与AFO面积之和的

13、最小值是()A.2B.3C.1728D.10答案B2.(2014浙江,22,14分)已知ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,PF=3FM.(1)若|PF|=3,求点M的坐标;(2)求ABP面积的最大值.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(22,2)或P(-22,2).由PF=3FM,分别得M-223,23或M223,23.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).由y=kx+m,x2=4y得x2-4kx-4m=0,于是=16k2+16m0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由PF=3FM,得(-x0,1-y0)=3(2k,2k2+m-1),所以x0=-6k,y0=4-6k2-3m,由x02=4y0得k2=-15m+415.由0,k20,得-13m43.又因为|AB|=41+k2k2+m,点F(0,1)到直线AB的距离为d=|m-1|1+k2,所以SABP=4SABF=8|m-1|k2+m=16153m3-5m2+m+1.记f(m)=3m3-5m2+m+1-13f43,所以,当m=19时,f(m)取到最大值256243,此时k=5

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高中教育 > 生物资料

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号