文档详情

初中的二次函数知识点考点及经典例题

枫**
实名认证
店铺
DOC
565KB
约11页
文档ID:463273232
初中的二次函数知识点考点及经典例题_第1页
1/11

word二次函数一、中考导航图 顶点式:y=a(x-h)2+k(a≠0)4.二次函数 待定系数法确定函数解析式 一般式:y=ax2+bx+c(a≠0) 两根式:y=a(x-x1)(x-x2)(a≠0)5.二次函数与一元二次方程的关系6.抛物线y=ax2+bx+c的图象与a、b、c之间的关系 三、中考知识梳理 在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+)2+ 的形式,先确定顶点(-,),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标. 抛物线的开口方向由a的符号来确定,当a>0时,在对称轴左侧y随x的增大而减小;在对称轴的右侧,y随x的增大而增大;简记左减右增,这时当x=-时,y最小值=;反之当a<0时,简记左增右减,当x=-时y最大值=. 一般地,在所给的三个条件是任意三点(或任意三对x,y的值)可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;在所给条件中顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中抛物线与x轴两交点坐标或抛物线与x轴一交点坐标和对称轴,如此可设解析式为y=a(x-x1)(x-x2)来求解. 抛物线y=ax2+bx+c当y=0时抛物线便转化为一元二次方程ax2+bx+c=0,即抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等实根;当抛物线y=ax2+bx+c与x轴有一个交点,方程ax2+bx+c=0有两个相等实根;当抛物线y=ax2+bx+c与x轴无交点,方程ax2+bx+c=0无实根. 5.抛物线y=ax2+bx+c中a、b、c符号确实定 a的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;c的符号由抛物线与y轴交点的纵坐标决定.当c>0时,抛物线交y轴于正半轴;当c<0时,抛物线交y轴于负半轴;b的符号由对称轴来决定.当对称轴在y轴左侧时,b的符号与a的符号一样;当对称轴在y轴右侧时,b的符号与a的符号相反;简记左同右异. 6.会构建二次函数模型解决一类与函数有关的应用性问题,应用数形结合思想来解决有关的综合性问题. 四、中考题型例析 1. 二次函数解析式确实定例1 求满足如下条件的二次函数的解析式 (1)图象经过A(-1,3)、B(1,3)、C(2,6); (2)图象经过A(-1,0)、B(3,0),函数有最小值-8; (3)图象顶点坐标是(-1,9),与x轴两交点间的距离是6. 分析:此题主要考查用待定系数法来确定二次函数解析式.可根据条件中的不同条件分别设出函数解析式,列出方程或方程组来求解. (1)解:设解析式为y=ax2+bx+c,把A(-1,3)、B(1,3)、C(2,6)各点代入上式得 解得∴解析式为y=x2+2.(2)解法1:由A(-1,0)、B(3,0)得抛物线对称轴为x=1,所以顶点为(1,-8).设解析式为y=a(x-h)2+k,即y=a(x-1)2-8. 把x=-1,y=0代入上式得0=a(-2)2-8,∴a=2. 即解析式为y=2(x-1)2-8,即y=2x2-4x-6.解法2:设解析式为y=a(x+1)(x-3),确定顶点为(1,-8)同上,把x=1,y=-8代入上式得-8=a(1+1)(1-3).解得a=2,∴解析式为y=2x2-4x-6. 解法3:∵图象过A(-1,0),B(3,0)两点,可设解析式为:y=a(x+1)(x-3)=ax2-2ax-3a.∵函数有最小值-8.∴=-8. 又∵a≠0,∴a=2.∴解析式为y=2(x+1)(x-3)=2x2-4x-6.(3)解:由顶点坐标(-1,9)可知抛物线对称轴方程是x=-1,又∵图象与x轴两交点的距离为6,即AB=6.由抛物线的对称性可得A、B两点坐标分别为A(-4,0),B(2,0),设出两根式y=a(x-x1)·(x-x2),将A(-4,0),B(2,0)代入上式求得函数解析式为y=-x2-2x+8. 点评:一般地,三个条件是抛物线上任意三点(或任意3对x,y的值)可设表达式为y=ax2+bx+c,组成三元一次方程组来求解;如果三个条件中有顶点坐标或对称轴或最值,可选用y=a(x-h)2+k来求解;假如三个条件中抛物线与x轴两交点坐标,如此一般设解析式为y=a(x-x1)(x-x2). 2. 二次函数的图象 例2 (2003·某某)y=ax2+bx+c(a≠0)的图象如下列图,如此点M(a,bc)在(  ).分析:由图可知: 抛物线开口向上a>0.bc>0.∴点M(a,bc)在第一象限. 答案:A.点评:此题主要考查由抛物线图象会确定a、b、c的符号.例3 (2003·某某)一次函数y=ax+c二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是( ).分析:一次函数y=ax+c,当a>0时,图象过一、三象限;当a<0时,图象过二、四象限;c>0时,直线交y轴于正半轴;当c<0时,直线交y轴于负半轴;对于二次函数y=ax2+bx+c(a≠0)来讲:解:可用排除法,设当a>0时,二次函数y=ax2+bx+c的开口向上,而一次函数y=ax+c应过一、三象限,故排除C;当a<0时,用同样方法可排除A;c决定直线与y轴交点;也在抛物线中决定抛物线与y轴交点,此题中c一样如此两函数图象在y轴上有一样的交点,故排除B. 答案:D. 3. 二次函数的性质 例4 (2002·某某)对于反比例函数y=-与二次函数y=-x2+3,请说出他们的两个一样点:①_________,②_________;再说出它们的两个不同点:①________,②_________. 分析:本小题是个开放性题目,可以从以下几点性质来考虑①增减性②图象的形状③最值④自变量取值X围⑤交点等. 解:一样点:①图象都是曲线,②都经过(-1,2)或都经过(2,-1); 不同点:①图象形状不同,②自变量取值X围不同,③一个有最大值,一个没有最大值. 点评:此题主要考查二次函数和反比例函数的性质,有关函数开放性题目是近几年命题的热点. 4. 二次函数的应用例5 (2003·某某)抛物线y=x2+(2k+1)x-k2+k, (1)求证:此抛物线与x轴总有两个不同的交点. (2)设x1、x2是此抛物线与x轴两个交点的横坐标,且满足x12+x22=-2k2+2k+1.①求抛物线的解析式.②设点P(m1,n1)、Q(m2,n2)是抛物线上两个不同的点,且关于此抛物线的对称轴对称. 求m+m的值.分析:(1)欲证抛物线与x轴有两个不同交点,可将问题转化为证一元二次方程有两个不相等实数根,故令y=0,证△>0即可.(2)①根据二次函数的图象与x轴交点的横坐标即是一元二次方程的根.由根与系数的关系,求出k的值,可确定抛物线解析式;②由P、Q关于此抛物线的对称轴对称得n1=n2,由n1=m12+m1,n2=m22+m2得m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0可求得m1+m2=-1.解:(1)证明:△=(2k+1)2-4(-k2+k) =4k2+4k+1+4k2-4k=8k2+1.∵8k2+1>0,即△>0,∴抛物线与x轴总有两个不同的交点. (2)①由题意得x1+x2=-(2k+1), x1· x2=-k2+k.∵x12+x22=-2k2+2k+1,∴(x1+x2)2-2x1x2=-2k2+2k+1,即(2k+1)2-2(-k2+k)=-2k2+k+1, 4k2+4k+1+2k2-2k=-2k2+2k+1.∴8k2=0,∴k=0,∴抛物线的解析式是y=x2+x.②∵点P、Q关于此抛物线的对称轴对称,∴n1=n2.又n1=m12+m1,n2=m22+m2.∴m12+m1=m22+m2,即(m1-m2)(m1+m2+1)=0.∵P、Q是抛物上不同的点,∴m1≠m2,即m1-m2≠0.∴m1+m2+1=0即m1+m2=-1. 点评:此题考查二次函数的图象(即抛物线)与x轴交点的坐标与一元二次方程根与系数的关系.二次函数经常与一元二次方程相联系并联合命题是中考的热点.根底达标验收卷一、选择题: 1.(2003·某某)抛物线y=(x-2)2+3的对称轴是( ). A.直线x=-3 B.直线x=3 C.直线x=-2 D.直线x=2 2.(2004·某某)二次函数y=ax2+bx+c的图象如图,如此点M(b,)在( ). 3.(2004·某某)二次函数y=ax2+bx+c,且a<0,a-b+c>0,如此一定有( ).22-4ac=022-4ac≤0 4.(2003·某某)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,如此有( ). A.b=3,c=7 B.b=-9,c=-15C.b=3,c=3 D.b=-9,c=215.(2004·某某)在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( ). 6.(2004·某某)二次函数y=ax2+bx+c(a≠0)图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( ).二、填空题 1.(2004·某某)假如将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,如此 y=_______. 2.(2003·某某)请你写出函数y=(x+1)2与y=x2+1具有的一个共同性质_______. 3.(2003·某某)抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),如此该抛物线的解析式为_________. 4.(2004·某某)二次函数的图象开口向下,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_________. 5.(2003·某某)抛物线y=ax2+x+c与x轴交点的横坐标为-1,如此a+c=_____. 6.(2002·东城)有一个二次函数的图象,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式:三、解答题 1.函数y=x2+bx-1的图象经过点(3,2). (1)求这个函数的解析式; (2)画出它的图象,并指出图象的顶点坐标;(3)当x>0时,求使y≥2的x取值X围.2.抛物线y=-x2+(6-)x+m-3与x轴有A、B两个交点,且A、B两点关于y轴对称. (1)求m的值; (2)写出抛物线解析式与顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.一、学科内综合题1.如图,二次函数y=ax2+bx+c。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档