文档详情

2.9《有理数的除法》教学设计.doc

工****
实名认证
店铺
DOC
16.50KB
约3页
文档ID:538991629
2.9《有理数的除法》教学设计.doc_第1页
1/3

2.9《有理数的除法》教学设计 十一建学校 张金涛一、教学目标 (一)知识教学点1.了解有理数除法的定义.2.理解倒数的意义.3.掌握有理数除法法则,会进行有理数的除法运算.(二)能力训练点1.通过有理数除法法则的导出及运算,让学生体会转化思想.2.培养学生运用数学思想指导思维活动的能力.(三)德育渗透点通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.(四)美育渗透点把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.重点:熟练进行有理数的除法运算难点:理解有理数的除法法则 二、学法引导1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.2.学生学法:通过练习探索新知→归纳除法法则→巩固练习三、重点、难点、疑点及解决办法1.重点:除法法则的灵活运用和倒数的概念.2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.3.疑点:对零不能作除数与零没有倒数的理解.四、课时安排1课时五、师生互动活动设计教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.六、教学步骤 (一)创设情境,复习导入 师:以上我们学习了有理数的乘法,这节我们应该学习有理数的除法,板书课题.【教法说明】有理数的除法同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习有理数的除法.(二)探索新知,讲授新课1.倒数.(出示投影1)4×( )=1; ×( )=1; 0.5×( )=1;0×( )=1; -4×( )=1; ×( )=1.学生活动:口答以上题目.【教法说明】在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.师问:两个数乘积是1,这两个数有什么关系?学生活动:乘积是1的两个数互为倒数.(板书)师问:0有倒数吗?为什么?学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.提出问题:根据以上题目,怎样求整数、分数、小数的倒数?【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.(出示投影2)求下列各数的倒数:(1); (2); (3);(4); (5)-5; (6)1.学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.2.有理数的除法计算:8÷(-4).计算:8×()=? (-2)∴8÷(-4)=8×().再尝试:-16÷(-2)=? -16×()=?师:根据以上题目,你能说出怎样计算有理数的除法吗?能用含字母的式子表示吗?学生活动:同桌互相讨论.(一个学生回答)师强调后板书:[板书]【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.(三)尝试反馈,巩固练习师在黑板上出示例题.计算(1)(-36)÷9, (2)()÷().学生尝试做此题目.(出示投影3)1.计算:(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).2.计算:(1)()÷(); (2)(-6.5)÷0.13;(3)()÷(); (4)÷(-1).学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?学生活动:分组讨论,1—2个同学回答.2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数,都得0.【教法说明】通过上组练习的结果,不难看出有理数的除法与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.(四)变式训练,培养能力回顾例1 计算:(1)(-36)÷9; (2)()÷().提出问题:每个题目你想采用哪种法则计算更简单?学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单. (2)题仍用除以一个数等于乘以这个数的倒数较简单.提出问题:-36:9=?;:()=?它们都属于除法运算吗?学生活动:口答出答案.(出示投影4)例2 化简下列分数(1); (2); (3)或3:(-36)(4); (5).例3 计算(1)()÷(-6); (2)-3.5÷×();(3)(-6)÷(-4)×().学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:如在(1)()÷(-6)中.根据方法①()÷(-6)=×()=.根据方法②()÷(-6)=(24+)×=4+=.让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.(五)归纳小结【教法说明】对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.七、随堂练习八、布置作业 。

下载提示
相似文档
正为您匹配相似的精品文档