文档详情

Bresenham算法-直线光栅化算法

206****923
实名认证
店铺
DOC
44.02KB
约7页
文档ID:91844706
Bresenham算法-直线光栅化算法_第1页
1/7

 Bresenham算法是计算机图形学典型的直线光栅化算法· 从另一个角度看直线光栅化显示算法的原理 o 由直线的斜率确定选择在x方向或y方向上每次递增(减)1个单位,另一变量的递增(减)量为0或1,它取决于实际直线与最近光栅网格点的距离,这个距离的最大误差为0.5   · 1)Bresenham的基本原理   o 假定直线斜率k在0~1之间此时,只需考虑x方向每次递增1个单位,决定y方向每次递增0或1 设    直线当前点为(xi,y)    直线当前光栅点为(xi,yi)则    下一个直线的点应为(xi+1,y+k)    下一个直线的光栅点        或为右光栅点(xi+1,yi)(y方向递增量0)        或为右上光栅点(xi+1,yi+1)(y方向递增量1)    记直线与它垂直方向最近的下光栅点的误差为d,有:d=(y+k)–yi,且    0≤d≤1    当d<0.5:下一个象素应取右光栅点(xi+1,yi)    当d≥0.5:下一个象素应取右上光栅点(xi+1,yi+1)如果直线的(起)端点在整数点上,误差项d的初值:d0=0,x坐标每增加1,d的值相应递增直线的斜率值k,即:d=d + k。

一旦d≥1,就把它减去1,保证d的相对性,且在0-1之间令e=d-0.5,关于d的判别式和初值可简化成:    e的初值e0= -0.5,增量亦为k;    e<0时,取当前象素(xi,yi)的右方象素(xi+1,yi);    e>0时,取当前象素(xi,yi)的右上方象素(xi+1,yi+1);     e=0时,可任取上、下光栅点显示Bresenham算法的构思巧妙:它引入动态误差e,当x方向每次递增1个单位,可根据e的符号决定y方向每次递增 0 或 1    e<0,y方向不递增    e>0,y方向递增1    x方向每次递增1个单位,e = e + k因为e是相对量,所以当e>0时,表明e的计值将进入下一个参考点(上升一个光栅点),此时须:e = e - 1  · 2)Bresenham算法的实施——Rogers 版   o 通过(0,0)的所求直线的斜率大于0.5,它与x=1直线的交点离y=1直线较近,离y=0直线较远,因此取光栅点(1,1)比(1,0)更逼近直线;如果斜率小于0.5,则反之;当斜率等于0.5,没有确定的选择标准,但本算法选择(1,1) (程序)  § //Bresenham's line resterization algorithm for the first octal.//The line end points are (xs,ys) and (xe,ye) assumed not equal.// Round is the integer function.// x,y, ∆x, ∆y are the integer, Error is the real.//initialize variablesx=xsy=ys∆x = xe -xs∆y = ye -ys//initialize e to compensate for a nonzero interceptError =∆y/∆x-0.5//begin the main loopfor i=1 to ∆x    WritePixel (x, y, value)    if (Error ≥0) then        y=y+1        Error = Error -1    end if    x=x+1    Error = Error +∆y/∆xnext ifinish   · 3)整数Bresenham算法   o 上述Bresenham算法在计算直线斜率和误差项时要用到浮点运算和除法,采用整数算术运算和避免除法可以加快算法的速度。

由于上述Bresenham算法中只用到误差项(初值Error =∆y/∆x-0.5)的符号因此只需作如下的简单变换:    NError = 2*Error*∆x即可得到整数算法,这使本算法便于硬件(固件)实现程序)  § //Bresenham's integer line resterization algorithm for the first octal.//The line end points are (xs,ys) and (xe,ye) assumed not equal. All variables are assumed integer.//initialize variablesx=xsy=ys∆x = xe -xs∆y = ye -ys//initialize e to compensate for a nonzero interceptNError =2*∆y-∆x                 //Error =∆y/∆x-0.5//begin the main loopfor i=1 to ∆x    WritePixel (x, y)    if (NError >=0) then        y=y+1        NError = NError –2*∆x  //Error = Error -1    end if    x=x+1    NError = NError +2*∆y       //Error = Error +∆y/∆xnext ifinish   · 4)一般Bresenham算法   o 要使第一个八卦的Bresenham算法适用于一般直线,只需对以下2点作出改造:当直线的斜率|k|>1时,改成y的增量总是1,再用Bresenham误差判别式确定x变量是否需要增加1;x或y的增量可能是“+1”或“-1”,视直线所在的象限决定。

程序)  § //Bresenham's integer line resterization algorithm for all quadrnts//The line end points are (xs,ys) and (xe,ye) assumed not equal. All variables are assumed integer.//initialize variablesx=xsy=ys∆x = abs(xe -xs)        //∆x = xe -xs∆y = abs(ye -ys)        //∆y = ye -yssx = isign(xe -xs)sy = isign(ye -ys)//Swap ∆x and ∆y depending on the slope of the line.if ∆y>∆x then    Swap(∆x,∆y)    Flag=1else    Flag=0end if//initialize the error term to compensate for a nonezero interceptNError =2*∆y-∆x//begin the main loopfor i=1 to ∆x    WritePixel(x, y , value)    if (Nerror>=0) then        if (Flag) then     //∆y>∆x,Y=Y+1            x=x+sx        else            y=y+sy        end if             // End of Flag        NError = NError –2*∆x    end if                 // End of Nerror     if (Flag) then        //∆y>∆x,X=X+1        y=y+sy    else        x=x+sx    end if    NError = NError +2*∆ynext ifinish   · 例子 o。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档