角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数它们的本质是任意角的集合与一个比值的集合的变量之间的映射通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域另一种定义是在直角三角形中,但并不完全现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系它包含六种基本函数:正弦、余弦、正切、余切、正割、余割由于三角函数的周期性,它并不具有单值函数意义上的反函数三角函数在复数中有较为重要的应用在物理学中,三角函数也是常用的工具起源 “三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文 Trigonometria现代三角学一词最初见于希腊文最先使用Trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。
因此解三角形构成了古代三角学的实用基础 早期的解三角形是因天文观测的需要而引起的还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行在当时,这种迁移和旅行是一种冒险的行动人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向那时,人们白天拿太阳作路标,夜里则以星星为指路灯太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确方向 就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的 同角三角函数的基本关系式 倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α 诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z) 两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα ·tanβ tanα-tanβtan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2)sinα=—————— 1+tan2(α/2) 1-tan2(α/2)cosα=—————— 1+tan2(α/2) 2tan(α/2)tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式三角函数 的降幂公式 二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanαtan2α=————— 1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2α 三角函数的和差化积公式三角函数的积化和差公式 α+β α-βsinα+sinβ=2sin—--·cos—-— 2 2 α+β α-βsinα-sinβ=2cos—--·sin—-— 2 2 α+β α-βcosα+cosβ=2cos—--·cos—-— 2 2 α+β α-βcosα-cosβ=-2sin—--·sin—-— 2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)目录余弦定理余弦定理性质余弦定理证明 1. 平面向量证法2. 平面几何证法余弦定理的作用其他余弦定理余弦定理性质余弦定理证明 1. 平面向量证法2. 平面几何证法余弦定理的作用其他展开编辑本段余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
编辑本段余弦定理性质 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质—— a^2 = b^2 + c^2 - 2·b·c·cosA b^2 = a^2 + c^2 - 2·a·c·cosB c^2 = a^2 + b^2 - 2·a·b·cosC cosC = (a^2 + b^2 - c^2) / (2·a·b) cosB = (a^2 + c^2 - b^2) / (2·a·c) cosA = (c^2 + b^2 - a^2) / (2·b·c) (物理力学方面的平行四边形定则中也会用到) 第一余弦定理(任意三角形射影定理) 设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有 a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A 编辑本段余弦定理证明平面向量证法 ∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) (以上粗体字符表示向量) 又∵Cos(π-θ)=-CosC ∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 即 CosC=(a^2+b^2-c^2)/2*a*b 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
平面几何证法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2 b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 编辑本段余弦定理的作用 (1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. (3)已知三角形两边及其一边对角,可求其它的角和第三条边见解三角形公式,推导过程略) 判定定理一(两根判别法): 若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取 减号的值 ①若m(c1,c2)=2,则有两解; ②若m(c1,c2)=1,则有一解; ③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解 判定定理二(角边判别法): 一当a>bsinA时 ①当b>a且cosA>0(即A为锐角)时,则有两解; ②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ③当b=a且cosA>0(即A为锐角)时,则有一解; ④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解); ⑤当b0(即A为锐角)时,则有一解; ②当cosA<=0(即A为直角或钝角)时,则有零解(即。