文档详情

三年级奥数详解答案 第十八讲 多笔画及应用问题

学***
实名认证
店铺
DOCX
18.84KB
约7页
文档ID:289692727
三年级奥数详解答案 第十八讲 多笔画及应用问题_第1页
1/7

本文格式为Word版,下载可任意编辑三年级奥数详解答案 第十八讲 多笔画及应用问题 第十八讲 多笔画及应用问题 上一讲中,我们主要研究了利用奇偶点来判别一笔画,学习了利用一笔画来研究一些简朴的实际问题.然而,实际生活中,大量问题的图并不能一笔画出,也就是说,一笔画理论不能直接用来解决这些问题.因此,在一笔画的根基上,我们有必要对这一类的问题作一些深入研究 一、多笔画 我们把不能一笔画成的图,归纳为多笔画.首先,我们来考虑一个不能一笔画成的图,至少用几笔才能画完呢?(为了研究的便当,我们依旧只研究连通图,非连通图可转化为连通图.) 下面,我们就用简朴熟谙的图来研究这个问题.通过前面的学习我们已经知道:当奇点个数不是0或2时,图不能一笔画出.因此,我们可以揣摩;奇点个数是研究多笔画问题的关键 查看下面的图形,并列稀奇点的个数与笔画数(至少几笔画完此图)的关系表格 为了表示得领会一些,我们把图中第一笔画出的片面用实线表示,其次笔画出的片面用虚线表示,第三笔画出的片面用点线表示,其余片面请大家自己画出. 奇点个数与笔画数的关系可列表如下: 轻易看出,笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,假设有2n个奇点(n为自然数),那么这个图确定可以用n笔画成.公式如下: 奇点数÷2=笔画数,即2n÷2=n。

细心的同学可能会问:2n是表示一个偶数,但倘使有奇数个奇点怎么办?实际上,这种处境不成能展现,连通图中,奇点的个数只能是偶数.想一想,这是为什么呢? 例1 查看下面的图,看各至少用几笔画成? 分析解答 (1)图中有8个奇结点,因此需用4笔画成 (2)图中有12个奇点,需6笔画成 (3)图是无奇点的连通图,可一笔画成 例2 判断下面的图能否一笔画成;若不能,你能用什么方法把它改成一笔画? 分析解答 图中共有4个奇点,因此,鲜明无法一笔画成.要想改为一笔画,关键在于裁减奇点的数目(把奇点的个数裁减到0或2),概括方法有两种: ①去边.即将多余的两奇点间的边去掉.这种方法只适用于多余的两奇点间有边相连的处境,如对下图就不适用. 此题中,可去掉连结奇点B、C的边BC ②添边.即在多余的两奇点间添上一条边.此题中,可以在奇点A、C间添上边AC.添边的方法适用于任意多笔画的图 改为一笔画时,概括实现的方案好多,如此题中,我们可以通过上述两种方法把奇点个数裁减到0。

小结:对于有2n(n为大于1的自然数)个奇点的连通图来说,改为一笔画的方法一般是:在多余的n-1(或n)对奇点间,各添上一条边;假设这n-1对(或n对)奇点间都有边相连,也可以在这n-1(或n)对间各去掉一条边 例3 将下图改为一笔画. 分析解答 图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又由于这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6) 图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又由于把奇点按A与B,C与D(或A与D,B与C)分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8). 说明:图(6)运用了两种方法,去掉边BC,添上边AD与EF. 二、应用问题 在学习了一笔画与多笔画的理论以后,我们来看看这些理论在实际问题中的应用 例4 下图是某少年宫的平面图,共有五个大厅,相邻两厅之间都有门相通(D与E两厅除外),并且有一个入口和一个出口.问游人能否从入口入,一次不重复地穿过全体的门?假设可以,请指明穿行路线;假设不能,请你想一想,关闭哪扇门后就可以办到? 分析解答 类似于上一节中的问题,我们把每个厅看作一个结点(室外也看作一个结点),两厅之间有门相通可看作两结点之间有线相连,于是问题转化为图(2)能否一笔画完的问题. 鲜明,图中有四个奇点:A、B、C、F,不成能一笔画出,即游人不成能一次不重复地穿过全体的门。

4个奇点时,只要把连接其中两个奇点的一条边去掉,这个图就只剩下两个奇点,就可以一笔画出,即游人可以用剩下的两个奇点分别作为起点和终点,不重复地穿过全体的门.关掉一扇门实际上就是去掉一条边.因此,我们可以考虑去掉边AC或AB.但是,值得留神的是:游人务必从入口进入,也即结点F务必作为起点,而此题中有4个奇点且只允许去掉一条边,因此F务必是奇点,也即不能去掉与F相连的边 通过上面的分析,我们知道:只要关闭A、C之间的门,或A、B之间的门,游人就可以从入口(边FC或FD或FE)入,一次不重复地穿过全体的门 例5 下图是某个花房的平面图,它由六间展室组成,每相邻两室间有一门相通.请你设计一个出口,使参观者能够从入口处A进去,一次不重复地经过全体的门,结果由出口走出花房 分析解答 同上分析,可把每个花室看作一个点(花房外也看作是一个结点),每个门看作是连接两结点的边,于是,上图就转化为右图.设计一个出口,实际上是添一条与结点A相连的边,使新图能够以A为起点和终点一笔画出,也就是说,新图中,全体的点都务必是偶点. 查看右图, 察觉只有A、F两个奇点,所以,应把边添在A与F之间(如右图),即:把出口开在花室F处。

例4与例5都是把多笔画改为一笔画的实际应用 例6 下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局启程,要走遍各条街道,结果回到邮局.问:邮递员怎样走,路线最合理? 分析解答 邮递员走的路程最短时,路线最合理.利用一笔画的学识分析可得:由于邮递员从邮局作为起点和终点,所以没有奇点是最梦想的,但实际上图中却有8个奇点,邮递员务必重复走某些路线.根据多笔画改为一笔画的方法得知:重复走的路线的两个端点应为奇点.重复的总路程理应尽可能短 我们把需重复走的路线,用虚线添在图中,通过分析与计算可知;当邮递员所走的路线如右图时,重复的路程最短,全程共走了56+4=60(里).其中56为全体街道的总长,4为所重复走的路程 此题属于最短邮递路线问题.解决这样的题目时,有两点值得留神:①在所给图中,每条边都有概括的长度,这与前面其他问题中不考虑长度是不同的;②邮递路线中,邮递员务必以邮局作为起点和终点,即在结果能一笔画出的图中,全体的点都务必是偶点.这也与前面游人可以选择进出口的问题不同 例7 右图是某地区街道的平面图,图上的数字表示那条街道的长度。

清早,洒水车从A启程,要洒遍全体的街道,结果再回到A.问:如何设计洒水路线最合理? 分析解答 这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K是中间点,因此务必成为偶点,这样洒水车务必重复走KC这条边(如下左图).至此,奇点的个数并未裁减,仍是6个,但问题却转化为例6的类型.类似于例6,轻易得出,洒水车务必重复走的路线有:GF、IJ、BC.即洒水路线如下右图 — 7 —。

下载提示
相似文档
正为您匹配相似的精品文档