文档详情

人教版高中数学选修2-3全册教学设计

缘***
实名认证
店铺
PDF
22.79MB
约147页
文档ID:453628518
人教版高中数学选修2-3全册教学设计_第1页
1/147

高 中 数 学 选 修2-3全 套 数 学 设 计目 录第一章计数原理.11.1 分类加法计数原理和分步乘法计数原理.11.2.1 排列.121.2.2 组合.291.3.1 二项式定理.431.3.2“杨辉三角”与二项式系数的性质.50第二章 随机变量及其分布.622.1.1 离散型随机变量.622.1.2 离散型随机变量的分布列.662.2.2 事件的相互独立性.762.2.3 独立重复实验与二项分布.842.3 离散型随机变量的均值与方差.932.3.1 离散型随机变量的均值.93第三章统计案例.1253.1 独立性检验(1).1253.1 独立性检验(2).1303.2 回归分析.133 3.2 回归分析.139第一章计数原理1.1 分类加法计数原理和分步乘法计数原理第一课时1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问 题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在 第 1类方案中有加种不同的方法,在 第 2 类方案中有种不同的方法.那么完成这件事共有N=m+n种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学医学信息技术学物理学工程学法学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在A ,B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条 件.解:这名同学可以选择A ,B两所大学中的一所.在A大 学 中 有5种专业选择方法,在B大 学 中 有4种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9 (种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在 第1类方案中有g种不同的方法,在第2类方案中有叫种不同的方法,在 第3类方案中有吗种不同的方法,那么完成这件事共有多少种不同的方法?第1页 共147页如果完成一件事情有类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在 第1类办法中有叫种不同的方法,在 第2类办法中有吗种不同的方法在 第n类办法中有叫种不同的方法.那么完成这件事共有N=+ni2+加”种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m l =1 X 2 =2 条 第二类,m 2 =1 X 2 =2 条第三类,m 3 =1 X 2 =2 条所以,根据加法原理,从顶点A到顶点C1最近路线共有N =2 +2 +2 =6 条练习:(1 )一件工作可以用2种方法完成,有5人只会用第1种方法完成,另 有4人只会用第2种方法完成,从 中 选 出1人来完成这件工作,不同选法的种数是;(2 )从A村 去B村的道路有3条,从B村 去C村的道路有2条,从A村 经B的路线有一条.第二课时2 分步乘法计数原理(1)提出问题问题2.1:用 前6个大写英文字母和1 9九个阿拉伯数字,以4,4,,昂,区,的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:第2页 共147页字母 数字 得到的号码我们还可以这样来思考:由于前6 个英文字母中的任意一个都能与9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6X9=5 4 个不同的号码.(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在 第 2 类方案中有几种不同的方法.那么完成这件事共有N=mxn 种不同的方法.(3)知识应用例 1.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第1 步选男生.第2 步选女生.解:第 1 步,从 3 0 名男生中选出1 人,有 30种不同选择;第 2 步,从 2 4 名女生中选出1 人,有 2 4 种不同选择.根据分步乘法计数原理,共有30X24=720种不同的选法.一般归纳:完成一件事情,需要分成n 个步骤,做 第 1 步有他种不同的方法,做第2步有恤种不同的方法做第n 步有叫种不同的方法.那么完成这件事共有N-mx x 加2 x x mn种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点相同点:都是完成一件事的不同方法种数的问题不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任第3页 共147页何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解:按地图A、B、C、D四个区域依次分四步完成,第一步,ml=3 种,第二步,m2=2第三步,m3=1 种,第四步,m4=1所以根据乘法原理,得到不同的涂色方案种数共有N=3 X 2 X 1X 1=6第三课时3 综合应用例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层 放2本不同的体育书.从书架上任取1本书,有多少种不同的取法?从书架的第1、2、3层各取1本书,有多少种不同的取法?第4页 共147页从书架上任取两本不同学科的书,有多少种不同的取法?【分析】要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只 有 第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层 取1本计算机书,有4种方法;第2类方法是从第2层 取1本文艺书,有3种方法;第3类方法是从第3层 取1本体育书,有2种方法.根据分类加法计数原理,不同取法的种数是N=叫 +m2+加3=4+3+2=9;(2 )从书架的第1,2,3层 各 取1本书,可以分成3个步骤完成:第1步 从 第1层 取1本计算机书,有4种方法;第2步 从 第2层 取1本文艺书,有3种方法;第3步从第3层 取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数是N =叫 x /x 相3=4 义 3 X 2=2 4 .(3)N =4 x 3 +4 x 2 +3 x 2 =2 6。

例2.要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅 画 中 选1幅挂在左边墙上,有3种选法;第2步,从剩 下 的2幅 画 中 选1幅挂在右边墙上,有2种选法.根据分步乘法计数原理,不同挂法的种数是N=3 X 2=6 .6种挂法可以表示如下:左边右边l乙j丙-甲乙一雨丙氏 甲丙 一一-乙得到的挂法左甲右乙左甲右丙左乙右甲左乙右丙左丙右甲左丙右乙甲分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同第5页 共147页方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.例 3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有 3 个不重复的英文字母和3 个不重复的阿拉伯数字,并 且 3 个字母必须合成一组出现,3 个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为2 类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6 个步骤.解:将汽车牌照分为2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分 6 个步骤确定一个牌照的字母和数字:第 1 步,从 26个字母中选1 个,放在首位,有 26种选法;第 2 步,从剩下的25个字母中选1 个,放在第2 位,有 25种选法;第 3 步,从剩下的24个字母中选1个,放在第3 位,有 24种选法;第 4 步,从 10个数字中选1 个,放在第4 位,有 10种选法;第 5 步,从剩下的9 个数字中选1 个,放在第5 位,有 9 种选法;第 6 步,从剩下的8 个字母中选1 个,放在第6 位,有 8 种选法.根据分步乘法计数原理,字母组合在左的牌照共有26 X25X24X10X9X8=11 232 000(个).同理,字母组合在右的牌照也有11232 000个.所以,共能给11232 000+11232 000=22464 000(个).辆汽车上牌照.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细第6页 共147页分析一需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整”一 完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.练习1.乘积(%+%)(仇+4+仇)(。

2+J+4+,5)展开后共有多少项?2.某局管辖范围内的号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是至 U 9 之间的一个数字,那么这个局不同的号码最多有多少个?3.从 5 名同学中选出正、副组长各1 名,有多少种不同的选法?4.某商场有6 个门,如果某人从其中的任意一个门进人商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?第四课时例 1.给程序模块命名,需要用3 个字符,其中首字符要求用字母A G 或U Z,后两个要求用数字1 9.问最多可以给多少个程序命名?分析:要给一个程序模块命名,可以分三个步骤:第 1 步,选首字符;第2 步,选中间字符;第 3 步,选最后一个字符.而首字符又可以分为两类.解:先计算首字符的选法.由分类加法计数原理,首字符共有7+6=1 3 种选法.再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13X9X9=1053个不同的名称,即最多可以给1053个程序命名.例 2.核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个RNA分。

下载提示
相似文档
正为您匹配相似的精品文档