初中数学《角的平分线性质的证明》教案教学设计及说课稿模板《角的平分线性质的证明》教学设计一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验二、教学重难点【重点】角的平分线的性质的证明及应用难点】角的平分线的性质的探究三、教学过程(一)导入新课1.复习角平分线的画法2.利用PPT创设情景:如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)生成新知探究做一做(学生独立完成,同组同学交流,找生到黑板上板演.教师纠正答案)如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.结论:角的平分线的性质:角的平分线上的点到角的两边的距离相等.证明步骤:①明确命题中的已知和求证②根据题意,画出图形,并用数学符号表示已知和求证③经过分析,找出由已知推出求证的途径,写出证明过程(三)深化新知思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)(四)应用新知1.例题:解决导入中PPT的问题2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.(2)下图中,PD⊥OA,PE⊥OB,垂足分别为点D、E,则图中PD=PE吗?(3)在S区有一个贸易市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?(五)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。
四、板书设计五、教学反思《角的平分线性质的证明》说课稿一、说教材《角平分线性质》是北师大版八年级下册第一章第四节的内容,角平分线的性质在第一册的教材中已经介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,同时在做图中也运用广泛,运用HL定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件性质定理和它的逆定理为证明线段相等、角相等开辟了新的途径,简化了证明过程二、说学情接下来,我来谈谈我班学生情况他们对于知识具有较好的理解能力和应用能力,喜欢合作探讨式学习,对数学学习有较浓厚的兴趣在以往的学习中,学生的动手能力已经得到了一定的训练,本节课将进一步培养学生这些方面的能力三、教学目标教学目标是教学活动实施的方向、和预期达到的结果、是一切教学活动的出发点和归宿,我精心设计了如下的教学目标:【知识与技能】进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题过程与方法】通过对“角平分线性质”的探究,提高分析问题、解决问题的能力情感态度与价值观】通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。
四、教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:【重点】证明角平分线的性质和判定难点】灵活运用角平分线性质解决问题五、教学方法根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体六、教学过程教学过程是师生积极参与、交往互动、共同发展的过程,具体教学过程如下:(一)导入新课问题:习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?于是,首先证明“三角形的三个内角的角平分线交于一点”当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明设计意图:在这一环节,通过回顾上节课的知识来回顾三角形三个内角的角平分线的位置关系进而引出本节课的内容,温故知新,让学生没有陌生感)(二)新课讲授问题一:已知:如图,设△ABC的角平分线.BM、CN相交于点P,证明:P点在∠BAC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P.在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?(PD=PE=PF,即这个交点到三角形三边的距离相等.)于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理问题二:如图:直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?你如何发现的?要求学生思考、交流。
实况如下:[生]有一处.在三条公路的交点A、B、C组成的△ABC三条角平分线的交点处.因为三角形三条角平分线交于一点,且这一点到三边的距离相等.而现在要建的货物中转站要求它到三条公路的距离相等.这一点刚好符合.[生]我找到四处.(同学们很吃惊)除了刚才同学找到的三角形ABC内部的一点外,我认为在三角形外部还有三点.作∠ACB、∠ABC外角的平分线交于点P1(如下图所示),我们利用角平分线的性质定理和判定定理,可知点P1在∠CAB的角平分线上,且到l1、l2、l3的距离相等.同理还有∠BAC、∠BCA的外角的角平分线的交点P3;因此满足条件共4个,分别是P、P1、P2、P3教师讲评设计意图:学生容易混淆角平分线和垂直平分线定理,在这里以例题的方式讲解更易于学生接受和理解并且能够解决实际问题)(三)例题讲解[例1]如图,在△ABC中.AC=BC,∠C=90,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4 cm,求AC的长;(2)求证:AB=AC+CD.分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4 cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长.第(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE.(1)解:∵AD是△ABC的角平分线,∠C=90,DE⊥AB.∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).∵∠AC=∠BC ∴∠B=∠BAC(等边对等角).∵∠C=90,∴∠B=2(1)90=45.∴∠BDE=90—45=45.∴BE=DE(等角对等边).在等腰直角三角形BDE中BD=2DE2.=4 2 cm(勾股定理),∴AC=BC=CD+BD=(4+42)cm.(2)证明:由(1)的求解过程可知,Rt△ACD≌Rt△AED(HL定理)∴AC=AE.∵BE=DE=CD,∴AB=AE+BE=AC+CD.[例2]已知:如图,P是么AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别为C、D.求证:(1)OC=OD;(2)OP是CD的垂直平分线.证明:(1)P是∠AOB角平分线上的一点,PC⊥OA,PD⊥OB,∴PC=PD(角平分线上的点到角两边的距离相等).在Rt△OPC和Rt△OPD中,OP=OP,PC=PD,∴Rt△OPC≌Rt△OPD(HL定理).∴OC=OD(全等三角形对应边相等).(2)又OP是∠AOB的角平分线,∴OP是CD的垂直平分线(等腰三角形“三线合一”定理).思考:图中还有哪些相等的线段和角呢?(设计意图:通过书本例题,巩固本节课关于角平分线性质的定理以及应用,学生能够通过例题来理解其定理的使用方法以及情况。
)(四)课时小结本节课我们利用角平分线的性质和判定定理证明了三角形三条角平分线交于一点,且这一点到三角形各边的距离相等.并综合运用我们前面学过的性质定理等解决了几何中的计算和证明问题.(设计意图:通过小结,引导学生从知识内容和学习过程两个方面总结自己的收获,通过建立知识之间的联系,凸显将复杂图形转化为简单图形的基本单元的化归思想,强调从特殊到一般地研究问题的方法)(五)课后作业习题1.9第1、2题并且有能力的同学预习下一节课内容设计意图:学生通过课前的预习,能对新知识有一个初步的理解,对新知识学习的顺利进行有着促进的作用)七、板书设计为了体现教材中的知识点,以便于学生能够理解掌握,我采用图表式的板书,这就是我的板书设计角平分线性质定理:角平分线上的点到这个角两边的距离相等定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上。