2019-2020年高三上学期期中考试数学理试题(V)一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题纸相应位置上.1.(5分)设集合U={1,2,3,4,5},A={1,2},B={2,3},则(∁UA)∩B= {3} .考点:交、并、补集的混合运算.专题:计算题.分析:找出U中不属于A的元素,确定出A的补集,找出A补集与B的公共元素,即可求出所求的集合.解答:解:∵U={1,2,3,4,5},A={1,2},∴∁UA={3,4,5},又B={2,3},则(∁UA)∩B={3}.故答案为:{3}点评:此题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键. 2.(5分)若复数z=(是虚数单位),则复数z的虚部是 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简复数z等于 +i,由此可得它的虚部.解答:解:∵复数z====+i,故它的虚部等于,故答案为 .点评:本题主要考查复数的基本概念,两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题. 3.(5分)设Sn是等差数列{an}(n∈N+)的前n项和,且a1=1,a4=7,则S5= 25 .考点:等差数列的前n项和.专题:计算题;等差数列与等比数列.分析:先由d=求出公差d,然后代入等差数列的求和公式即可求解解答:解:∵a1=1,a4=7,∴d==2∴=25故答案为:25点评:本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题 4.(5分)函数,则f(2)= 1 .考点:函数的值.专题:函数的性质及应用.分析:按照分段函数解析式的特点代入数值计算即可.解答:解:由f(x)解析式得,f(2)=f(2+3)=f(5)=5﹣4=1,故答案为:1.点评:本题考查分段函数求值,属基础题. 5.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+|= .考点:数量积表示两个向量的夹角;向量的模.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义求出 =1,求出 =+2+ 的值,即可求得的值.解答:解:由题意可得||=2,||=1,向量与的夹角为60°,∴=2×1×cos60°=1,∴=+2+=4+2+1=7,∴=,故答案为 .点评:本题主要考查两个向量的数量积的定义,求向量的模的方法,属于中档题. 6.(5分)已知510°角的始边在x轴的非负半轴上,终边经过点P(m,2),则m= ﹣2 .考点:任意角的概念.专题:三角函数的求值.分析:利用诱导公式求得cos510°=﹣,再由任意角的三角函数的定义可得m<0且﹣=,由此求得m的值.解答:解:∵510°=360°+150°,∴cos510°=cos150°=﹣cos30°=﹣.再由510°角的终边经过点P(m,2),可得m<0,且 cos510°=﹣=,解得 m=﹣2,故答案为﹣2.点评:本题主要考查任意角的三角函数的定义,诱导公式,终边相同的角的性质,属于基础题. 7.(5分)函数的定义域是 .考点:对数函数的定义域.专题:计算题.分析:欲求函数的定义域,只需找到使函数解析式有意义的x的取值范围,因为函数中有对数,所以真数大于0,因为函数中有二次根式,所以被开方数大于等于0,解不等式组即可.解答:解:要使函数有意义,需满足,解得∴函数的定义域为故答案为点评:本题主要考察了函数定义域的求法,主要是求使函数成立的x的取值范围. 8.(5分)(2012•上海)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)= 3 .考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意y=f(x)是奇函数,g(x)=f(x)+2得到g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4,再令x=1即可得到1+g(﹣1)=4,从而解出答案解答:解:由题意y=f(x)是奇函数,g(x)=f(x)+2∴g(x)+g(﹣x)=f(x)+2+f(﹣x)+2=4又g(1)=1∴1+g(﹣1)=4,解得g(﹣1)=3故答案为3点评:本题考查函数奇偶性的性质,解题的关键是利用性质得到恒成立的等式,再利用所得的恒等式通过赋值求函数值 9.(5分)已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,若数列的前n项和为Sn,则S2013的值为 .考点:利用导数研究曲线上某点切线方程;数列的求和.专题:综合题;导数的概念及应用.分析:对函数求导,根据导数的几何意义可求切线在x=1处的斜率,然后根据直线平行时斜率相等的条件可求b,代入可求f(n),利用裂项求和即可求得结论.解答:解:由f(x)=x2+bx求导得:f′(x)=2x+b,∵函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,∴f′(1)=2+b=3,∴b=1,∴f(x)=x2+x所以f(n)=n(n+1),∴=∴S2013的值为1﹣+﹣+…+﹣=1﹣=故答案为:点评:本题考查了导函数的几何意义,考查利用利用裂项相消法求数列的前n项和的方法,属于中档题. 10.(5分)在锐角△ABC中,若A=2B,则的取值范围是 (,) .考点:正弦定理.专题:解三角形.分析:利用正弦定理列出关系式,将A=2B代入,利用二倍角的正弦函数公式化简,约分得到结果为2cosB,根据三角形的内角和定理及三角形ABC为锐角三角形,求出B的范围,进而确定出cosB的范围,即可得出所求式子的范围.解答:解:∵A=2B,∴根据正弦定理=得:====2cosB,∵A+B+C=180°,∴3B+C=180°,即C=180°﹣3B,∵C为锐角,∴30°<B<60°,又0<A=2B<90°,∴30°<B<45°,∴<cosB<,即<2cosB<,则的取值范围是(,).故答案为:(,)点评:此题考查了正弦定理,余弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键. 11.(5分)已知函数存在单调递减区间,则实数a的取值范围为 (﹣1,0)∪(0,+∞) .考点:利用导数研究函数的单调性.专题:计算题;导数的综合应用.分析:利用导数进行理解,即f'(x)<0在(0,+∞)上有解.可得ax2+2x﹣1>0在正数范围内至少有一个解,结合根的判别式列式,不难得到a的取值范围.解答:解:对函数求导数,得f'(x)=﹣,(x>0)依题意,得f'(x)<0在(0,+∞)上有解.即ax2+2x﹣1>0在x>0时有解.∴△=4+4a>0且方程ax2+2x﹣1=0至少有一个正根.∴a>﹣1,∴a≠0,∴﹣1<a<0,或a>0.故答案为:(﹣1,0)∪(0,+∞).…(5分)点评:本题主要考查函数与导数,以及函数与方程思想,体现了导数值为一种研究函数的工具,能完成单调性的判定和最值的求解方程,同时能结合常用数学思想,来考查同学们灵活运用知识解决问题的能力. 12.(5分)(2010•马鞍山模拟)如图,在平面四边形ABCD中,若AC=3,BD=2,则= 5 .考点:向量在几何中的应用.专题:计算题;转化思想.分析:先利用向量的加法把转化为,再代入原题整理后即可求得结论.解答:解:因为=(+)+(+)=+()=.∴()•()=()•()=﹣=32﹣22=5.故答案为5点评:本题主要考查向量在几何中的应用以及向量的加法运算,是对基础知识的考查,属于基础题目. 13.(5分)(2011•盐城模拟)已知函数f(x)=|x2﹣6|,若a<b<0,且f(a)=f(b),则a2b的最小值是 ﹣16 .考点:利用导数求闭区间上函数的最值;二次函数的性质.专题:函数的性质及应用.分析:由题意可得 a2﹣6=6﹣b2,即 a2+b2=12,﹣2<b<0,故g(b)=a2b=(12﹣b2) b=12b﹣b3.利用导数研究函数的单调性,根据函数的单调性求函数的最小值.解答:解:∵函数f(x)=|x2﹣6|,若a<b<0,且f(a)=f(b),∴a2﹣6=6﹣b2,即 a2+b2=12.∴﹣<b<0,∴a2b=(12﹣b2) b=12b﹣b3.设g(b)=12b﹣b3,则 g'(b)=12﹣3b2,令 g'(b)=0,解得b=﹣2,所以,g(b)在(﹣,﹣2)上单调递减,g(b)在[﹣2,0)上单调增,故g(b)最小值是g(﹣2)=﹣24+8=﹣16,故答案为﹣16.点评:本题主要考查二次函数的性质应用,利用导数研究函数的单调性,根据函数的单调性求函数的最小值,属于基础题. 14.(5分)(2011•盐城模拟)设等差数列{an}满足:公差d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的一项.若a1=35,则d的所有可能取值之和为 364 .考点:等差数列的性质.专题:计算题.分析:先求出数列的通项公式,求出数列{an}中任意两项之和,根据数列{an}中任意两项之和仍是该数列中的一项求出d=,再结合k,m,n,d∈N*,即可求出d的所有可能取值进而求出结论.解答:解:设等差数列的公差为d,若a1=35,=243,则an=243+(n﹣1)d.所以数列{an}中任意两项之和am+an=243+(m﹣1)d+243+(n﹣1)d=486+(m+n﹣2)d.设任意一项为ak=243+(k﹣1)d.则由am+an=ak 可得 243+(m+n﹣k﹣1)d=0,化简可得 d=.再由k,m,n,d∈N*,可得 k+1﹣m﹣n=1,3,9,27,81,243,∴d=243,81,27,9,3,1,则d的所有可能取值之和为 364,故答案为 364.点评:本题主要考查等差数列的性质.解决问题的关键在于利用数列{an}中任意两项之和仍是该数列中的一项求出d=,属于中档题. 二.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.15.(14分)(2011•日照模拟)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:充分条件;命题的真假判断与应用.分析:(1)p∧q为真,即p和q均为真,分别解出p和q中的不等式,求交集即可;(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.解答:解:(1)a=1时,命题p:x2﹣4x+3<0⇔1<x<3命题q:⇔⇔2<x≤3,p∧q为真,即p和q均为真,故实数x的取值范围是2<x<3(2)﹁p是﹁q的充分不必要条件⇔q是p的充分不必要条件,即q⇒p,反之不成立.即q中的。