文档详情

五六年级数学公式概念

人***
实名认证
店铺
DOC
26KB
约9页
文档ID:425719200
五六年级数学公式概念_第1页
1/9

五六年级里的所有数学公式和概念 公式集 一般运算规则 1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 倍数×倍数=几倍数 几倍数÷1 倍数=倍数 几倍数÷倍数=1 倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工 作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C 周长 S 面积 a 边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S 表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C 周长 S 面积 a 边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 体积=长×宽×高 V=abh 5 三角形 s 面积 a 底 h 高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s 面积 a 底 h 高 面积=底×高 s=ah 7 梯形 s 面积 a 上底 b 下底 h 高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S 面积 C 周长 ∏ d=直径 r=半径 周长=直径×∏=2×∏×半径 C=∏d=2∏r 面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高 表面积=侧面积+底面积×2 体积=底面积×高 体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 小学奥数公式 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题的公式 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题的公式 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题的公式 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题的公式 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题的公式 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题的公式 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题的公式 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 单位换算 (1)1 公里=1 千米 1 千米=1000 米 1 米=10 分米 1 分米=10 厘米 1 厘米=10 毫米 (2)1 平方米=100 平方分米 1 平方分米=100 平方厘米 1 平方厘米=100 平方毫米 (3)1 立方米=1000 立方分米 1 立方分米=1000 立方厘米 1 立方厘米=1000 立方毫米 (4)1 吨=1000 千克 1 千克= 1000 克= 1 公斤 = 1 市斤 (5)1 公顷=10000 平方米 1 亩=666.666 平方米 (6)1 升=1 立方分米=1000 毫升 1 毫升=1 立方厘米 ▲乘法定律: 乘法交换律:a×b = b×a 乘法结合律:a×b×c = a×(b×c) 乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b) ▲除法性质:a÷b÷c = a÷(b×c) ▲减法性质:a –b - c = a - (b + c) ▲解方程定律: ◇加数 +加数= 和 ; 加数= 和–另一个加数. ◇被减数–减数= 差; 被减数=差+减数; 减数=被减数–差. ◇因数×因数= 积; 因数= 积÷另一个因数. ◇被除数÷除数= 商; 被除数=商×除数; 除数=被除数÷商. 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一,算术方面 1.加法交换律:两数相加交换加数的位置,和不变. 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变. 3.乘法交换律:两数相乘,交换因数的位置,积不变. 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相 乘,它们的积不变. 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个 积相加,结果不变.如: (2+4)×5=2×5+4×5. 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0 除 以任何不是 0 的数都得 0. 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式 两边同时乘以(或除以)一个相同的数,等式仍然成立. 8.方程式:含有未知数的等式叫方程式. 9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程 式. 学会一元一次方程式的例法及计算.即例出代有 χ 的算式并计算. 10.分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数. 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相 加减,先通分,然后再加减. 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比 较,先通分然后再比较;若分子相同,分母大的反而小. 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变. 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母. 15.分数除以整数(0 除外) ,等于分数乘以这个整数的倒数. 16.真分数:分子比分母小的分数叫做真分数. 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于 1. 18.带分数:把假分数写成整数和真分数的形式,叫做带分数. 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0 除外) ,分数的大小 不变. 20.一个数除以分数,等于这个数乘以分数的倒数. 21.甲数除以乙数(0 除外) ,等于甲数乘以乙数的倒数 初中的 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于 180° 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边,对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边,直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线,底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于 60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称 轴上 45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分, 那么这两个图形关于这条直 线对称 46 勾股定理 直角三角形两直角边 a,b 的平方和,等于斜边 c 的平方,即 a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三边长 a,b,c 有关系 a^2+b^2=c^2 ,那么这个三角形 是直角三角形 48 定理 四边形的内角和等于 360° 49 四边形的外角和等于 360° 50 多边形内角和定理 n 边形的内角的和等于(n-2)×180° 51 推论 任意多边的外角和等于 360° 52 平行四边形性质定理 1 平行四边形的对角相等 53 平行四边形性质定理 2 平行四边形的对边相等 54 推论 夹在两条平行线间的平行线段相等 55 平行四边形性质定理 3 平行四边形的对角线互相平分 56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形 60 矩形性质定理 1 矩形的四个角都是直角 61 矩形性质定理 2 矩形的对角线相等 62 矩。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档