word傅里叶变换分析信号的缺点基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最根本的经典工具来使用.但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改良.傅里叶变换的特点与其局限性设函数f(t)在(-,+)内有定义,且使广义积分都收敛,如此称(1)式定义的广义积分为函数f(t)的傅里叶变换,记为F{f(t)},(2)式定义的广义积分为逆傅里叶变换,记为{F()}傅里叶变换可以完成从时域到频域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息其核函数是,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延伸的正弦波,在积分变换中表现为积分X围从+到-因此,傅里叶变换是先天的非局限性,它对信号f(t)中表现任何局部信息处理都是一样的而事实上,工程技术中的许多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔t内,以后快速减为零,t以外是未知的,可能为零,也可能是背景噪音,如果用(1)式从信号中提取谱信号F(),就要取无限的时间量,使用过去的与将来的信号只为计算单个频谱,不能反映出随时间变化的频率,实际上我们需要的是确定的某个时间间隔内的频谱。
这就使人们想到改良傅里叶变换使其能用来处理某个确定时间X围内的信号Gabor提出的窗口傅里叶变换就是一个有效的方法另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的由公式其中物平面为(,),焦平面为(),d0为物距,d1为象平面要使=F{(,)},即准确实现傅里叶光学变换,只有在==f时才能实现,否如此将出现位相弯曲并且,只有正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可根据需要在既包含空域信息也包括空频域信息的平面上进展处理,这使光学信息处理更具灵活性1傅里叶变换缺乏时间和频率的定位功能傅里叶变换与其逆变换表示如下由以上两式可知,傅里叶变换是一种整体变换,对信号的表征要么完全在时域内,要么完全在频域内, 0的频谱分量S(0),必须从-~+的整个时间轴上进展积分.如果要从频谱得到信号在某一时刻t0的值s(t0),如此需要对S(X)在整个频率轴上进展积分.因此,傅里叶变换得到的是信号s(t)在整个时间X围内的频率特性,它不能告诉人们在某段时间里信号发生了什么变化,也无法获得某一频率出现的时刻信息,因此,它不具有时间和频率的定位功能.2傅里叶变换对于非平稳信号的局限性 信号的瞬时频率,表示了信号的谱峰在时间-频率平面上的位置与其随时间的变化情况,一般平稳信号的瞬时频率为常数,而非平稳信号的瞬时频率是时间t的函数.从傅里叶变换变换的表达式可以看出,S(X)是单变量X的函数,信号的傅里叶变换不随时间的变化而变化,因此,傅里叶变换仅仅适用于平稳信号.但是,在实际工作中,我们分析和处理的往往是时变的或非平稳的信号,它们的频率随时间变化而变化,其相关函数、功率谱等也是时变信号,用傅里叶变换进展分析,得到的信号频谱反映的是整体信号中包含的某一频率分量的平均值.所以傅里叶变换不能反映信号瞬时频率随时间的变化情况,仅仅适用于分析平稳信号.对频率随时间变化的非平稳信号,傅里叶变换只能给出其总体效果,不能完整地把握信号在某一时刻的本质特征.3傅里叶变换在时间和频率分辨率上的局限性分辨率是信号处理的根本概念之一,包括频率分辨率和时间分辨率.在时域分析中,信号处理的目标是尽可能地同时获得高的时间分辨率和频率分辨率.然而,可以证明时域窗和频域窗乘积恒定且大于等于1/2,也即不可能同时获得高的时频分辨率,这就是著名的不确定性原理.傅里叶变换在这方面的表现尤其不尽如人意.傅里叶变换可以改写成内积的形式,即由于傅里叶变换等效于s(t)和基函数做内积,而对不同的构成一族正交基,因此S(在频域是位于处的函数,因此,当用傅里叶变换来分析信号的频域特性时,具有最好的频率分辨率.但是,在时域对应的是正弦函数,其在时域的持续时间是-~+因此,其时域分辨率最差.对于傅里叶逆变换,分辨率的情况正好相反.这一结果既表现了信号的时频不确定性原理,也反映了傅里叶变换在时域和频域分辨率方面所固有的矛盾.显然,傅里叶变换本身不可能根据信号的特性来自动调节时域和频域的分辨率.时频分析时频分析〔JTFA〕即时频联合域分析〔Joint Time-Frequency Analysis〕的简称,作为分析时变非平稳信号的有力工具,成为现代信号处理研究的一个热点,它作为一种新兴的信号处理方法,近年来受到越来越多的重视。
时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系时频分析的根本思想是:设计时间和频率的联合函数,用它同时描述信号在不同时间和频率的能量密度或强度时间和频率的这种联合函数简称为时频分布利用时频分布来分析信号,能给出各个时刻的瞬时频率与其幅值,并且能够进展时频滤波和时变信号研究信号时频分析具有重要的意义我们很有必要对信号的时频进展研究分析常用的时频分析方法时间和频率是描述信号的两个最重要的物理量,信号的时域和频域之间具有严密的联系根据时间和频率之间的关系,信号的时频分析的主要方法有:窗口傅立叶变换〔Gabor变换〕;小波变换;希尔伯特黄变〔Hilbert-Huang Transform,HHT 〕窗口傅里叶变换窗口傅里叶变换亦称短时傅里叶变换,它是由Gabor首先系统地使用的其根本想法为:傅里叶变换是频域分析的根本工具,为了达到时间域上局部化,在傅里叶分析中的根本变换函数之前乘上一个时间上有限的时限函数,即窗口函数)(tg,然后再用它们来作傅里叶分析,这样tjeω−起频限作用,)(tg起到时限作用,合起来,就可起到时频双限制作用其中)(tg是有紧支集〔即窗口外数据为零〕的函数。
)(tx为被分析的信号 随着τ的位置变动,)(tg所确定的“时间窗〞在t轴上移动,使)(tx逐步进入被分析的状态窗口函数)(tg,一般为实的偶函数,窗口外数据为零〔紧支集〕或很快趋于零这时傅里叶变换结果不再为)(ωX,而是)(*)(ωωGX,这里),(τωxG大致反映了)(tx在时刻τ时频率为ω的“信号成分〞的相对含量时频局部化就是希望找一种信号的表示方法,它能同时提供时域和频域的局部化信息而这种变换确实能反映函数在窗口内部〔τ附近〕的频谱特征窗口傅里叶变换可使信号达到局部平稳,更好地研究局部X围的特性窗口函数)(tg的傅里叶变换,它在有限区间之外数据恒等于零用)(τ−tg乘)(tx,即在τ附近开窗口,为窗口傅里叶变换 Gabor只做了高斯窗 的傅里叶变换,它是窗口傅里变换的一种尽管窗口傅里叶变换是一种时频分析,是信号处理的重要工具,并得到广泛的应用,但是窗口傅里叶变换的一个主要缺点是时域和频域的采样间隔都是常数,即这种窗口大小和形态与频率无关,是固定不变的,不能使变换窗口大小随频率而变化但在处理实际问题,我们希望时域的采样间隔随着频率的增高而减小,同时窗口傅里叶变换不管如何离散化均不能使它成为一组正交基。
为此,J.Morlet等人对窗口傅里叶变换进展了改造,引入了小波变换连续小波变换小波变换时今年来在图像处理中受到十分重视的新技术,面向图像压缩、特征测以与纹理分析等许多方法在时频分析中有重要的应用线性系统理论中的傅立叶变换是以在两个方向上都无限伸展的正弦曲线波作为正交基函数的对于瞬态信号或高度局部化的信号〔例如边缘〕,由于这些成分并不类似于任何一个傅立叶基函数,它们的变换系数〔频谱〕不是紧凑的,频谱上呈现出一幅相当混乱的构成这种情况下,傅立叶变换是通过复杂的安排,以抵消一些正弦波的方式构造出在大局部区间都为零的函数而实现的为了克制上述缺陷,使用有限宽度基函数的变换方法逐步开展起来了这些基函数不仅在频率上而且在位置上是变化的,它们是有限宽度的波并被称为小波〔wavelet〕基于它们的变换就是小波变换所有小波是通过对根本小波进展尺度伸缩和位移得到的根本小波是一具有特殊性质的实值函数,它是震荡衰减的,而且通常衰减得很快,在数学上满足积分为零的条件:而且其频谱满足条件:即根本小波在频域也具有好的衰减性质有些根本小波实际上在某个区间外是零,这是一类衰减最快的小波一组小波基函数是通过尺度因子和位移因子由本小波来产生。
连续小波变换定义为:小波分析的应用是与小波分析的理论研究严密地结合在一起地现在,它已经在科技资讯产业领域取得了令人瞩目的成就 电子资讯技术是六大高新技术中重要的一个领域,它的重要方面是影像和信号处理现今,信号处理已经成为当代科学技术工作的重要局部,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、准确地重构〔或恢复〕从数学的角度来看,信号与影像处理可以统一看作是信号处理〔影像可以看作是二维信号〕,在小波分析地许多分析的许多应用中,都可以归结为信号处理问题现在,对于其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析但是在实际应用中的绝大多数信号是非稳定的,而特别适用于非稳定信号的工具就是小波分析希尔伯特黄变换希尔伯特特换变换的方法主要由2个局部组成::经验模态分解〔empirical mode deposition,简称EMD〕和Hilbert谱分析经验模态分解方法是一种自适应的、高效的数据分解方法由于这种分解是以局部时间尺度为根底,因此,它适应于非线性、非平稳过程通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions,简称IMF)的线性叠加。
一个固有模态函数是满足以下两个条件的函数[1]:〔1〕在整个数据区间内,极值点的数目与过零点的数目相等或至多相差1个;〔2〕在任意一点处,由局部极大值点定义的包络以与由局部极小值点定义的包络的均值为零 EMD方法通过不断的剔出极大值和极小值连接上下包络的均值将原信号分解为其中 为一个IMF分量, 为剩余分量,一般为信号的平均趋势,为常数序列或单调序列从基函数理论的角度来看,EMD对不同信号分解出的基函数 是不同的,它不同傅里叶分解的基(一系列恒定幅度与频率的正余弦函数),也不同于小波分解的基函数(预先给定基函数的形式)因此,EMD分解不仅改良了信号分解的效率,而且使这种分解方法更有利于非平稳数据处理 通过分解得到IMF后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度设IMF分量为 ,如此它的复解析信号为其中a(t) 为幅值函数,表达式为φ(t)为相位函数,表达式为其中幅值函数表示信号每个采样点的瞬时幅度能量;相位函数表示信号每个采样点的瞬时相位,对其求导就得到瞬时频率对每个IMF分量做Hilbert变换并忽略分解余项,数据可以表示为:根据式〔1〕可以将幅度和瞬时相位作为时间的函数表示在三维平面中,幅度的这种时一频分布被称为希尔伯特幅度谱,简称为希尔伯特谱。
习惯上用幅度的平方来表示能量密度,这里如果用幅度平方代替希尔伯特幅度谱中的幅度,将得到希尔伯特能量谱对于希尔伯特能量谱,如果EMD分解得到的IMF分量彼此完全正交,那么信号的平方:式中的第二项为0,这对于时频能量表示是十分有利的虽然对于某些特殊的数据,相邻的分量在不同的时间段内可能含有一样的频率。