红外发热纳米纤维材料

上传人:bin****86 文档编号:60256359 上传时间:2018-11-15 格式:DOCX 页数:18 大小:26.09KB
返回 下载 相关 举报
红外发热纳米纤维材料_第1页
第1页 / 共18页
红外发热纳米纤维材料_第2页
第2页 / 共18页
红外发热纳米纤维材料_第3页
第3页 / 共18页
红外发热纳米纤维材料_第4页
第4页 / 共18页
红外发热纳米纤维材料_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《红外发热纳米纤维材料》由会员分享,可在线阅读,更多相关《红外发热纳米纤维材料(18页珍藏版)》请在金锄头文库上搜索。

1、为了适应公司新战略的发展,保障停车场安保新项目的正常、顺利开展,特制定安保从业人员的业务技能及个人素质的培训计划红外发热纳米纤维材料纳米红外节能涂料产品简介:纳米红外节能涂料是由优质的抗氧化物质经超细化处理制得的高辐射材料,将此材料涂覆于经表面处理后的格子砖表层,可提高格子砖的发射率,提高其蓄热能力。原理:工业炉内的加热,因炉温高,其传热方式以辐射为主,燃料燃烧将热量以辐射的方式传给工件及炉衬,辐射是以发射电磁波传递热量,其发射量与绝对温度的4次方成正比。炉衬传递给工件的辐射热占加热工件总热量的60%,可见,增强炉衬对工件的有效辐射,就可以提高炉窑的热效率。高温辐射能量大多数集中在1-5m波段

2、,如1000和1300时,会分别有76%和85%的辐射能量集中在这一波段内,而一般的耐火材料在这一波段的发射率很低,对高温辐射不利,红外辐射涂料可以弥补这一不足。适用范围:主要用途:锅炉、工业电炉、均热炉、陶瓷窑炉、石油化工行业的加热炉、裂解炉、冶金热风炉、球团竖炉、轧钢加热炉等各种工业炉窑的节能。特性:作用:生产流程:施工步骤:应用:应用模式一:利用高吸收、高发射率的特点高辐射覆层用于轧钢加热炉、陶瓷炉窑等工业炉的炉衬时,炉衬吸热量增加,大量不能通过炉壁向外及时传递热量会改变为15m的波长的热量向炉膛内辐射。15m波长的热量是极易被钢坯等工件吸收,因此炉窑的热效率提高。应用模式二:利用高吸收

3、的特点高辐射覆层用于锅炉管外壁、焦炉炉立火道与炭化室隔墙时,由于吸热快,提高了锅炉管外壁、隔墙炉壁的吸热能力,提高了向水、炭化室传热的热动力。应用模式三:利用高吸收、高蓄热;高发射、高放热的特点。高辐射覆层用于蓄热体,如格子砖表面。高辐射覆层通过强化辐射换热,提高了蓄热体表面温度,增加了蓄热体内外温度梯度,使蓄热体升温期吸热速度和吸热量增加,降温期放热速度和放热量也增加,从而提高热风温度。纳米纤维概述1.纳米纤维的概念纳米纤维是指直径处在纳米尺度范围(1100nm)内的纤维,根据其组成成分可分为聚合物纳米纤维、无机纳米纤维及有机/无机复合纳米纤维。纳米纤维具有孔隙率高、比表面积大、长径比大、表

4、面能和活性高、纤维精细程度和均一性高等特点,同时纳米纤维还具有纳米材料的一些特殊性质,如由量子尺寸效应和宏观量子隧道效应带来的特殊的电学、磁学、光学性质1。纳米纤维主要应用在分离和过滤、生物及医学治疗、电池材料、聚合物增强、电子和光学设备和酶及催化作用等方面。2.纳米纤维的制备方法随着纳米纤维材料在各领域应用技术的不断发展,纳米纤维的制备技术也得到了进一步开发与创新。到目前为止,纳米纤维的制备方法主要包括化学法、相分离法、自组装法和纺丝加工法等。而纺丝加工法被认为是规模化制备高聚物纳米纤维最有前景的方法,主要包括静电纺丝法、双组份复合纺丝法、熔喷法和激光拉伸法等。静电纺丝法静电纺丝法是近年来应

5、用最多、发展最快的纳米纤维制备方法2-4,其原理是聚合物溶液或熔体被加上几千至几万伏的高压静电,从而在毛细管和接地的接收装置间产生一个强大的电场力,随着电场力的增大,毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,即泰勒锥。当外加静电压增大且超过某一临界值时,聚合物溶液所受电场力将克服其本身的表面张力和黏滞力而形成喷射细流,在喷射出后高聚物流体因溶剂挥发或熔体冷却固化而形成亚微米或纳米级的高聚物纤维,最后由接地的接收装置收集。利用静电纺丝法可制备得到多种聚合物纳米纤维,而采用不同的装置可收集获得无序排列的纳米纤维毡或定向排列的纳米纤维束,也可制备空心结构、实心结构、芯-核结构的纳米纤

6、维,满足其在不同领域的应用需要。双组份复合纺丝法双组份复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维为主5-7,其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维8。Fedorova等9以PA6为“岛”,PLA为“海”,利用复合纺丝法制备得到PA6/PLA复合纤维,然后选择溶剂将作为“海”组分的PLA基体相去除,最终获得尺寸为微纳米级的PA6纤维。研究发现,当“岛”

7、的数量增加至360个时,制备所得纳米纤维的直径为360nm。海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。熔喷法熔喷技术是规模化生产超细纤维的重要方法10-12。熔喷法的原理是将聚合物原料经喷丝板喷出,然后在高温高速气流的喷吹下使其受到进一步拉伸,从而形成超细纤维。熔喷纺丝法是利用熔融纺丝技术的方法,不用像静电纺丝需要溶剂,效率较高、成本较低,也易于进行大批量的生产,较经济。此方法得到的纤维都是无序排列的短纤维和球型颗粒形成的纤维网,但适用的材料的

8、种类并不多。熔喷法制备超细纤维技术的关键在于如何进一步减小所获纤维的尺寸。最直接降低纤维尺寸的方法是减少聚合物熔体的喂入速率,但是这个方法只能将纤维的直径减少到一定范围内,并且会影响纤维的生产率。Ellison等12研究表明可利用熔喷技术生产直径为几百纳米的聚合物纤维。他们利用特殊的模头,通过熔喷技术制备得到直径为250nm的PP纳米纤维;同时还利用熔喷技术制备得到包含600个“岛”的海岛复合纤维,去除基体后所获纳米纤维的直径为50nm。激光拉伸法随着纳米纤维在各领域应用的不断发展,纳米纤维制备新技术和新方法不断涌现13-15,Suzuki等16-19提出一种CO2激光超声波拉伸法,即利用CO

9、2激光照射纤维的同时在超声波条件下对其进行拉伸,产生约为105倍的拉伸比。由于纤维受到连续的拉伸作用,因此制备所得纳米纤维为连续长丝。此方法在制备纳米纤维的过程中不需要任何溶剂或第二组分的去除,并且不需要结合其他工艺,因此其方法简单且易于操作,可用于制备多种聚合物纳米纤维,如PLLA、PGA、PEN、PET等。Nakata等20通过复合纺丝法制备得到PA6/PET海岛复合纤维,利用CO2激光加热牵伸并去除海组分PA6后,获得了直径仅为39nm的连续PET纳米纤维。3纳米纤维的应用由于纳米纤维具有独特性能,其已成为材料科学领域研究的重点之一。纳米纤维应用在复合材料增强、过滤、组织工程、药物缓释、

10、传感等领域的研究已取得了丰硕的成果。过滤材料过滤材料在原料或产品分离提纯、空气及水体净化、废弃物排放前处理等工业生产环节发挥着重要的作用。在现代生物、医药等领域的快速发展中,对过滤材料也提出新的需求。如对直径在微米和纳米级的粒子有很好的过滤效果,则要求过滤材料的通道和空隙结构必须与过滤对象的粒径相配对,而静电纳米纤维是制备高效过滤介质最直接有效的方法之一。静电纺丝纳米纤维膜孔径在数十纳米到几微米间变化,孔隙率高,而且具有连贯的孔洞结构,具有良好的空气通透性和对目的物的截留吸附性能。Wang等21通过静电纺聚偏氟乙烯-六氟丙烯(PVdF-HFP)得到平均直径在500nm左右的纳米纤维,在其表面涂

11、敷聚吡咯,对滤液中的金离子有很好的吸附性能。Ma等22用聚砜静电纺丝得到纳米纤维膜,并分别在其表面接枝甲基丙烯酸、二氨基-二苯胺以及色素配体CibacronblueF3GA,得到纳米纤维膜,该膜对牛血清蛋白有很好的吸附过滤效果。chen23等用-环式糊精对制备所得碳纳米纤维膜进行功能化处理,指出处理后的碳纳米纤维膜是一种理想的大分子过滤材料,可用于染料过滤、手性大分子过滤以及药物传递等领域。组织工程当纤维直径小于或相当于动物体细胞直径时,细胞可粘附在纤维上并沿纤维生长。近年来,纳米纤维膜以其巨大的细胞外基质仿生潜能,被认为是一种很好的组织工程中细胞培养的支架材料24。ZongXH等25认为静电

12、纺丝技术制得的具有三维结构的纳米纤维膜比表面积大、孔隙率高,纳米纤维直径尺寸与体内许多细胞相当,能够负载生长因子并诱导细胞粘附、增殖和分化,对于体外细胞培养,以及模拟细胞外基质构造具有特殊优势。KyongSR等人26将胶原蛋白溶解在HFIP中,经过静电纺丝获得纳米纤维,戊二醛交联后再进行细胞外基质蛋白仿生修饰,用于人表皮细胞和口腔细胞的培养,并在纤维轴向上取向生长。Park等27利用静电纺丝法将载药PLGA纳米纤维覆盖于食道移植片表面,用于延长药物释放。然后,为了获得更佳的药物延长释放效果,在载药PLGA纳米纤维表面又覆盖了另外一层PLGA纳米纤维,结果表明:利用此方法制备所得药物输送食道移植

13、片有希望用于长时间治疗由食道癌引起的吞咽困难。Mackie等28在PLA中加入CNTs,制备得到电活性的纳米纤维支架,表征其形态以及物理化学性能。研究表明:此纳米纤维支架被用于培养人体细胞的过程中不会产生不利的细胞霉素,因此包含CNTs的纳米纤维支架可用于电活性组织工程领域。药物缓释药物缓释系统是为了在较长时间内维持药物有效浓度,通过改变药剂结构,使药物在预定时间内释放于相应的作用环境中,提高药物的稳定性和有效利用率,降低药物的毒副作用,减少服药次数,减轻患者的痛苦29。静电纺丝选材十分灵活,是可直接生产纳米尺寸药物颗粒的方法,可将很多30药物添加在适当的溶液中进行静电纺丝。Xu等采用乳液电纺

14、方法制备了含盐酸阿霉素的纳米纤维,其油相是PEG-PLLA共聚物的氯仿溶液,水相是含盐酸阿霉素水溶液。制得的复合纳米纤维表面光滑,无药物晶体。荧光显微发现,该纳米纤维具有核-壳型结构。体外降解实验结果表明,该复合纳米纤维具有良好的可控缓释性能。SongBT等31研究了具有双载药体系的复合纳米纤维,分别用荧光素和若丹明为模拟药物,负载于多孔硅纳米颗粒中,再分散到以聚乳酸-聚羟乙酸共聚物为连续相的纺丝液中,静电纺丝后制得载药复合纳米纤维。研究结果表明,两种模拟药物具完全独立的释放动力学。荧光素在324h内完全释放,而若丹明释放速度则相对比较缓慢。研究同时发现,改变纤维中多孔硅纳米颗粒中若丹明的含量

15、可以对其释放量进行有效调控。传感器纳米技术的发展,为传感器提供了优良的纳米敏感材料。与传统的传感器相比,纳米传感器尺寸小、敏感性高、应用领域广,基于纳米技术制作的传感器也极大地丰富了传感器的基础理论。其中纳米纤维由于其吸附力强、生物兼容性好、催化效率高、便于从反应体系中分离等性能,在传感器技术中得到广泛重视。纳米纤维的引入大幅提高了检测灵敏度,缩短响应时间,使仪器向微型化发展成为可能32-34。目前,基于纳米纤维制备的传感器,已经应用于无机及有机物的检测。Liu等35将有序聚苯胺纳米纤维搭接在两块电极之间作为化学传感器,用于低浓度氨气的检测。LuohR等36研究了一种基于PAN静电纺纳米纤维的CO2气体传感器,他们将包含纳米颗粒的聚合物溶液静电纺成纳米纤维,纳米颗粒选择粒径在10-70nm的氧化锌、氧化铁。用这种包含纳米颗粒的PAN纳米纤维用作传感器与傅立叶红外光谱仪连接起来检测CO2气体,吸收光谱显示出该传感器具有很高的敏感性。WangX等37将聚丙烯酸(PAA)和聚甲醇芘的共聚物PAA-PM通过静电纺成纳米纤维,并将其引入基于荧光悴灭的光学传感器中,纳米纤维的高孔隙率的结构和大比表面积使得传感器能够对检测物有很高的灵敏度,实现对2,4-二硝基甲苯

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 总结/报告

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号