1常用半导体器件

上传人:野鹰 文档编号:26695768 上传时间:2017-12-30 格式:PPT 页数:93 大小:1.35MB
返回 下载 相关 举报
1常用半导体器件_第1页
第1页 / 共93页
1常用半导体器件_第2页
第2页 / 共93页
1常用半导体器件_第3页
第3页 / 共93页
1常用半导体器件_第4页
第4页 / 共93页
1常用半导体器件_第5页
第5页 / 共93页
点击查看更多>>
资源描述

《1常用半导体器件》由会员分享,可在线阅读,更多相关《1常用半导体器件(93页珍藏版)》请在金锄头文库上搜索。

1、第一章 常用半导体器件,1.1 半导体的基本知识,1.1.1 导体、半导体和绝缘体,导体:自然界中很容易导电的物质称为导体,金属一般都是导体。,绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。,半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。,半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。例如:,当受外界热和光的作用时,它的导电能 力明显变化。,往纯净的半导体中掺入某些杂质,会使 它的导电能力明显改变。,1.1.2 本征半导体,一、本征半导体的结构特点,通过一定的工艺过程,可以将半导体制成晶体。,现代电

2、子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个。,硅和锗的共价键结构,共价键共用电子对,+4表示除价电子外的正离子,共价键中的两个电子被紧紧束缚在共价键中,称为束缚电子,常温下束缚电子很难脱离共价键成为自由电子,因此本征半导体中的自由电子很少,所以本征半导体的导电能力很弱。,形成共价键后,每个原子的最外层电子是八个,构成稳定结构。,共价键有很强的结合力,使原子规则排列,形成晶体。,二、本征半导体的导电机理,在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为 0,相当于绝缘体。,在常温下,由于热激

3、发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。,1.载流子、自由电子和空穴,自由电子,空穴,束缚电子,2.本征半导体的导电机理,在其它力的作用下,空穴吸引附近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。,本征半导体中存在数量相等的两种载流子,即自由电子和空穴。,温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。,本征半导体的导电能力取决于载流子的浓度。,本征半导体中电流由两部分组成: 1. 自由电子移动产生的电流。

4、 2. 空穴移动产生的电流。,1.1.3 杂质半导体,在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。其原因是掺杂半导体的某种载流子浓度大大增加。,P 型半导体:空穴浓度大大增加的杂质半导体,也称为(空穴半导体)。,N 型半导体:自由电子浓度大大增加的杂质半导体,也称为(电子半导体)。,一、N 型半导体,在硅或锗晶体中掺入少量的五价元素磷(或锑),晶体点阵中的某些半导体原子被杂质取代,磷原子的最外层有五个价电子,其中四个与相邻的半导体原子形成共价键,必定多出一个电子,这个电子几乎不受束缚,很容易被激发而成为自由电子,这样磷原子就成了不能移动的带正电的离子。每个磷原子给出一

5、个电子,称为施主原子。,多余电子,磷原子,1、由施主原子提供的电子,浓度与施主原子相同。,2、本征半导体中成对产生的电子和空穴。,掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。,二、P 型半导体,空穴,硼原子,P 型半导体中空穴是多子,电子是少子。,三、杂质半导体的示意表示法,杂质型半导体多子和少子的移动都能形成电流。但由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。,1.2 PN结及半导体二极管,2.1.1 PN 结的形成,在同一片半导体基片上,分别制造P 型半导体和N 型半导体,经过载

6、流子的扩散,在它们的交界面处就形成了PN 结。,P型半导体,N型半导体,扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。,内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。,空间电荷区,N型区,P型区,电位U,Uh0,1、空间电荷区中没有载流子。,2、空间电荷区中内电场阻碍P中的空穴、N区 中的电子(都是多子)向对方运动(扩散运动)。,3、P 区中的电子和 N区中的空穴(都是少子),数量有限,因此由它们形成的电流很小。,注意:,2.1.2 PN结的单向导电性,PN 结加上正向电压、正向偏置的意思都是: P 区加正、N 区加负电压。,PN 结加上反向电压、反向偏置的意思都是: P区加负、N

7、 区加正电压。,一、PN 结正向偏置,P,N,+,_,内电场被削弱,多子的扩散加强能够形成较大的扩散电流。,二、PN 结反向偏置,N,P,+,_,内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。,R,E,1. 在杂质半导体中多子的数量与 (a. 掺杂浓度、b.温度)有关。,2. 在杂质半导体中少子的数量与 。 (a. 掺杂浓度、b.温度)有关。,3. 当温度升高时,少子的数量 。 (a. 减少、b. 不变、c. 增多),a,b,c,4. 在外加电压的作用下,P 型半导体中的电流主要是 ,N 型半导体中的电流主要是 。 (a. 电子电流、b.空穴电流),b

8、,a,思考题:,三、PN结的电容效应,PN结具有一定的电容效应,它由两方面的因素决定。 一是势垒电容CB 二是扩散电容CD,(1) 势垒电容CB,势垒电容是由空间电荷区离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。势垒电容的示意图如下。,图 01.09 势垒电容示意图,扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因 PN 结正偏时,由N区扩散到 P 区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。,(2)

9、 扩散电容CD,反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。扩散电容的示意图如下图所示。,当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不相同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。,2.1.3 半导体二极管,一、基本结构,PN 结加上管壳和引线,就成为半导体二极管。,二极管按结构分有点接触型、面接触型二大类。,(1) 点接触型二极管,(2) 面接触型二极管,PN结面积小,结电容小,用于检波和变频等高频电路。,PN结面积大,用于大电流整流电路。,二、伏安特性,式中IS 为反向饱和电流,VD 为二极

10、管两端的电压降,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数,q 为电子电荷量,T 为热力学温度。对于室温(相当T=300 K),则有VT=26 mV。,第一象限的是正向伏安特性曲线,第三象限的是反向伏安特性曲线。,(1) 正向特性,硅二极管的死区电压Vth=0.6左右, 锗二极管的死区电压Vth=0.2左右。,当0VVth时,正向电流为零,Vth称死区电压或开启电压。,正向区分为两段:,当V Vth时,开始出现正向电流,并按指数规律增长。,反向区也分两个区域:,当VBRV0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS 。,当VVBR时,反向电

11、流急剧增加,VBR称为反向击穿电压 。,(2) 反向特性,三、主要参数,1. 最大整流电流 IF,二极管长期使用时,允许流过二极管的最大正向平均电流。,2. 反向击穿电压UBR,二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压UR一般是UBR的一半。,3. 反向电流 IR,指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。,以上均是二极管的直流参数,二极管的应用是主要利用它的单向

12、导电性,主要应用于整流、限幅、保护等等。下面介绍两个交流参数。,4. 微变电阻 rD,uD,rD 是二极管特性曲线上工作点Q 附近电压的变化与电流的变化之比:,5. 二极管的极间电容,二极管的两极之间有电容,此电容由两部分组成:势垒电容CB和扩散电容CD。,势垒电容:势垒区是积累空间电荷的区域,当电压变化时,就会引起积累在势垒区的空间电荷的变化,这样所表现出的电容是势垒电容。,扩散电容:为了形成正向电流(扩散电流),注入P 区的电子在P 区有浓度差,越靠近PN结浓度越大,即在P 区有电子的积累。同理,在N区有空穴的积累。正向电流大,积累的电荷多。这样所产生的电容就是扩散电容CD。,CB在正向和

13、反向偏置时均不能忽略。而反向偏置时,由于载流子数目很少,扩散电容可忽略。,PN结高频小信号时的等效电路:,势垒电容和扩散电容的综合效应,二极管基本电路分析,四、二极管基本电路分析,二极管模型,正向偏置时:管压降为0,电阻也为0。,反向偏置时:电流为0,电阻为。,当iD1mA时, vD=0.7V。,1. 理想模型,2. 恒压降模型,3. 折线模型(实际模型),4. 小信号模型,1.3 特殊二极管,1.3.1 稳压二极管,U,IZ,稳压误差,曲线越陡,电压越稳定。,-,UZ,(4)稳定电流IZ、最大、最小稳定电流Izmax、Izmin。,(5)最大允许功耗,稳压二极管的参数:,(1)稳定电压 UZ

14、,(3)动态电阻,1.3.2 光电二极管,反向电流随光照强度的增加而上升。,1.3.3 发光二极管,有正向电流流过时,发出一定波长范围的光,目前的发光管可以发出从红外到可见波段的光,它的电特性与一般二极管类似。,1.4 半导体三极管,1.4.1 基本结构,基极,发射极,集电极,NPN型,PNP型,基区:较薄,掺杂浓度低,集电区:面积较大,发射区:掺杂浓度较高,发射结,集电结,三极管实现电流放大时的外部条件,发 射 结 正 偏 集 电 结 反 偏,VBE,VCE,要求 VCE VBE,偏置电阻,假设三极管为NPN型管,改用一组电池来实现,1.4.2 电流放大原理,1.4.2 电流放大原理,EB,

15、RB,EC,进入P区的电子少部分与基区的空穴复合,形成电流IBN ,多数扩散到集电结。,发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。,EB,RB,EC,集电结反偏,有少子形成的反向电流ICBO。,从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICN。,IB=IBN+IEP-ICBO=IB -ICBO,ICN与IB之比称为电流放大倍数,要使三极管能放大电流,必须使发射结正偏,集电结反偏。,NPN型三极管,PNP型三极管,1.4.3 特性曲线,IC,V,UCE,UBE,RB,IB,EC,EB,实验线路,一、输入特性,工作压降: 硅管UBE0.60.7V,锗管UBE0.20.3V。,死区电压,硅管0.5V,锗管0.2V。,二、输出特性,IC(mA ),此区域满足IC=IB称为线性区(放大区)。,当UCE大于一定的数值时,IC只与IB有关,IC=IB。,此区域中UCEUBE,集电结正偏,IBIC,UCE0.3V称为饱和区。,此区域中 : IB=0,IC=ICEO,UBE 死区电压,称为截止区。,例: =50, USC =12V, RB =70k, RC =6k 当USB = -2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 其它文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号