基于单片机简易的频率计.doc

上传人:marr****208 文档编号:145017761 上传时间:2020-09-15 格式:DOC 页数:25 大小:1.37MB
返回 下载 相关 举报
基于单片机简易的频率计.doc_第1页
第1页 / 共25页
基于单片机简易的频率计.doc_第2页
第2页 / 共25页
基于单片机简易的频率计.doc_第3页
第3页 / 共25页
基于单片机简易的频率计.doc_第4页
第4页 / 共25页
基于单片机简易的频率计.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《基于单片机简易的频率计.doc》由会员分享,可在线阅读,更多相关《基于单片机简易的频率计.doc(25页珍藏版)》请在金锄头文库上搜索。

1、武汉理工大学数字电子技术课程设计说明书摘要11芯片介绍11.1 LM324111.2 AT89S52211.2.1 AT89S52的主要性能11.2.2 AT89S52的功能特性描述21.2.3 AT89S52的引脚功能描述31.2.4 特殊功能寄存器41.2.5存储器结构71.2.6 定时器0和定时器171.2.7 定时器271.2.8 中断81.2.9晶振特性91.2.10 Flash编程并行模式102总体方案设计112.1设计要点112.2 系统方案113模块设计与实现123.1 显示模块123.2单片机总控制单元:123.3放大整形电路4134 软件设计3145 测试结果186 总结与

2、体会19参考文献20附录1:总体电路原理图21附录2:元件清单22武汉理工大学数字电子技术课程设计说明书摘要本次设计的简易频率计,是以AT89S52单片机为控制核心,辅以放大整形电路,显示电路构成的。简易频率计能够根据题目要求能够用4位7段数码管显示待测频率,格式为0000Hz。测量频率09999Hz信号类型:正弦波、方波和三角波。测量信号幅值:0.19V。另外,采用在线编程校准大大提高了频率计的测量精度,在9999Hz的频率范围内,可以把误差控制在0.022%以下。而且具有灵活的现场可更改性。在不更改硬件电路的基础上,对系统进行各种改进还可以进一步提高系统的性能。该数字频率计具有高速、精确、

3、可靠、抗干扰性强和现场可编程等优点。 对所设计的频率计的各项指标进行了测量和记录,满足要求,且在局部某些地方有自己的创新之处,相比用中规模集成器件构成的频率计优点有成本低、原理简单、功能齐全,实现价值高,各项性能较好。关键字:数字频率计 AT89S52 可编程 高精度I武汉理工大学数字电子技术课程设计说明书1芯片介绍本次课程设计主要用到的芯片有用于整形电路的集成运放LM324和主控芯片AT89S52,下面对这两块芯片作一下详细的介绍。1.1 LM3241图1 LM324的外形LM324 是四运放集成电路,它采用14 脚双列直插塑料封装,外形如图1所示。它的内部包含四组形式完全相同的运算放大器,

4、除电源共用外,四组运放相互独立。每一组运算放大器可用图2所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo 的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。LM324 的引脚排列见图3。 图2 运算放大器的符号 图3 LM324的引脚排图由于LM324 四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。1.2 AT89S5221.2.1 AT89S52的主要性

5、能l 与MCS-51单片机产品兼容l 8K字节在系统可编程Flash存储器l 1000次擦写周期l 全静态操作:0Hz33Hzl 三级加密程序存储器l 32个可编程I/O口线l 三个16位定时器/计数器l 八个中断源l 全双工UART串行通道l 低功耗空闲和掉电模式l 掉电后中断可唤醒l 看门狗定时器l 双数据指针l 掉电标识符1.2.2 AT89S52的功能特性描述AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程

6、,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或

7、硬件复位为止。其引脚结构图如图4所示。图4 AT89S52的引脚结构1.2.3 AT89S52的引脚功能描述VCC : 电源GND: 地P0: P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,引脚用作高阻抗输入。当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。P1:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4个TTL 逻辑电平。对P1 端口写“1”时

8、,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX),具体如下表1所示。在flash编程和校验时,P1口接收低8位地址字节。表1 P1 口部分引脚的第二功能P2:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4个TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)

9、。在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。P3:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。P3口亦作为AT89S52特殊功能(第

10、二功能)使用,如表2所示。在flash编程和校验时,P3口也接收一些控制信号。表2 P3 口引脚的第二功能RST: 复位输入。晶振工作时,RST脚持续2个机器周期高电平将使单片机复位。看门狗计时完成后,RST 脚输出96个晶振周期的高电平。特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。DISRTO默认状态下,复位高电平有效。ALE/PROG:地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8 位地址的输出脉冲。在flash编程时,此引脚(PROG)也用作编程输入脉冲。在一般情况下,ALE 以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。然而,特别

11、强调,在每次访问外部数据存储器时,ALE脉冲将会跳过。如果需要,通过将地址为8EH的SFR的第0位置 “1”,ALE操作将无效。这一位置 “1”,ALE 仅在执行MOVX 或MOVC指令时有效。否则,ALE 将被微弱拉高。这个ALE 使能标志位(地址为8EH的SFR的第0位)的设置对微控制器处于外部执行模式下无效。PSEN:外部程序存储器选通信号(PSEN)是外部程序存储器选通信号。当AT89S52从外部程序存储器执行外部代码时,PSEN在每个机器周期被激活两次,而在访问外部数据存储器时,PSEN将不被激活。EA/VPP:访问外部程序存储器控制信号。为使能从0000H 到FFFFH的外部程序存

12、储器读取指令,EA必须接GND。为了执行内部程序指令,EA应该接VCC。在flash编程期间,EA也接收12伏VPP电压。XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。XTAL2:振荡器反相放大器的输出端。1.2.4 特殊功能寄存器特殊功能寄存器(SFR)的地址空间映象如表3所示。并不是所有的地址都被定义了。片上没有定义的地址是不能用的。读这些地址,一般将得到一个随机数写入的数据将会无效。用户不应该给这些未定义的地址写入数据“1”。由于这些寄存器在将来可能被赋予新的功能,复位后,这些位都为“0”。表3 AT89S52 特殊寄存器映象及复位值定时器2 寄存器:寄存器T2CON 和T2M

13、OD 包含定时器2 的控制位和状态位(如表4和表5所示),寄存器对RCAP2H和RCAP2L是定时器2的捕捉/自动重载寄存器。中断寄存器:各中断允许位在IE寄存器中,六个中断源的两个优先级也可在IE中设置。双数据指针寄存器:为了更有利于访问内部和外部数据存储器,系统提供了两路16位数据指针寄存器:位于SFR中82H83H的DP0和位于84H85。特殊寄存器AUXR1中DPS0 选择DP0;DPS=1 选择DP1。用户应该在访问数据指针寄存器前先初始化DPS至合理的值。表4 T2CON:定时器/计数器2控制寄存器表5 AUXR:辅助寄存器1.2.5存储器结构MCS-51器件有单独的程序存储器和数

14、据存储器。外部程序存储器和数据存储器都可以64K寻址。程序存储器:如果EA引脚接地,程序读取只从外部存储器开始。对于89S52,如果EA 接VCC,程序读写先从内部存储器(地址为0000H1FFFH)开始,接着从外部寻址,寻址地址为:2000HFFFFH。数据存储器:AT89S52 有256 字节片内数据存储器。高128 字节与特殊功能寄存器重叠。也就是说高128字节与特殊功能寄存器有相同的地址,而物理上是分开的。当一条指令访问高于7FH 的地址时,寻址方式决定CPU 访问高128 字节RAM 还是特殊功能寄存器空间。直接寻址方式访问特殊功能寄存器(SFR)。例如,下面的直接寻址指令访问0A0

15、H(P2口)存储单元MOV 0A0H , #data使用间接寻址方式访问高128 字节RAM。例如,下面的间接寻址方式中,R0 内容为0A0H,访问的是地址0A0H的寄存器,而不是P2口(它的地址也是0A0H)。MOV R0 , #data堆栈操作也是简介寻址方式。因此,高128字节数据RAM也可用于堆栈空间。1.2.6 定时器0和定时器1在AT89S52 中,定时器0 和定时器1 的操作与AT89C51 和AT89C52 一样。为了获得更深入的关于UART 的信息,可参考ATMEL网(http:/)。从这个主页,选择“Products”,然后选择“8051-Architech Flash Microcontroller”,再选择“ProductOverview”即可。1.2.7 定时器2定时器2是一个16位定时/计数器,它既可以做定时器,又可以做事件计数器。其工作方式由特殊寄存器T2CON中的C/T2位选择(如表2所示)。定时器2有三种工作模式:捕捉方式、自动重载(向下或向上计数)和波特率发生器。如表4 所示,工作

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 其它相关文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号