形心平均的最优凸组合界

上传人:E**** 文档编号:110866071 上传时间:2019-10-31 格式:PDF 页数:29 大小:411.11KB
返回 下载 相关 举报
形心平均的最优凸组合界_第1页
第1页 / 共29页
形心平均的最优凸组合界_第2页
第2页 / 共29页
形心平均的最优凸组合界_第3页
第3页 / 共29页
形心平均的最优凸组合界_第4页
第4页 / 共29页
形心平均的最优凸组合界_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《形心平均的最优凸组合界》由会员分享,可在线阅读,更多相关《形心平均的最优凸组合界(29页珍藏版)》请在金锄头文库上搜索。

1、HEBEI UNIVERSITY 密级: 分 类 号: 学校代码: 密级: 分 类 号: 学校代码:10075 学号:学号:20090881 硕士学位论文硕士学位论文 形心平均的最优凸组合界 学位申请人: 郭建玲 指 导 教 师 : 高红亚 教授 学 位 类 别 : 理学硕士 学 科 专 业 : 应 用 数 学 授 予 单 位 : 河北大学 答 辩 日 期 : 二O一二年五月 Classihed Index:CODE: 10075 U.D.C. :NO: 20090881 A Dissertation for the Degree of Master Science Optimal Conve

2、x Combination Bounds for Centroidal Mean Candidate : Guo Jianling Supervisor : Prof. Gao Hongya Academic Degree Applied for : Master of Science Speciality : Applied Mathematics University : Hebei University Date of Accomplishment : May, 2012 ? ? ? ?.? ?,?,?,?, Seifert?. ?1, 1, 2, 2, 3, 3, 4, 4? 1C(a

3、,b) 十 (1 1)Mq(a,b) E(a,b) 1C(a,b) 十 (1 1)Mq(a,b), 2C(a,b) 十 (1 2)G(a,b) E(a,b) 2C(a,b) 十 (1 2)G(a,b), 3C(a,b) 十 (1 3)L(a,b) E(a,b) 3C(a,b) 十 (1 3)L(a,b), 4C(a,b) 十 (1 4)P(a,b) E(a,b) 4C(a,b) 十 (1 4)P(a,b) ?,?a,b 0?a b.?Mq(a,b), C(a,b), G(a,b), L(a,b), P(a,b), E(a,b)? ?a, b?,?,?,?, Seifert? ?. ?Seife

4、rt? ? I Abstract Abstract Various means of two positive numbers a and b and their inequalities have wide applications in the helds of statistics, mathematics and engineering.In this paper, we consider optimal convex combination bounds for the centroidal mean in terms of contraharmonic, geometric, lo

5、garithmic, Seifert and golden section means. We hnd the optimal values for 1, 1, 2, 2, 3, 3, 4and 4such that the inequalities 1C(a,b) 十 (1 1)Mq(a,b) E(a,b) 1C(a,b) 十 (1 1)Mq(a,b), 2C(a,b) 十 (1 2)G(a,b) E(a,b) 2C(a,b) 十 (1 2)G(a,b), 3C(a,b) 十 (1 3)L(a,b) E(a,b) 3C(a,b) 十 (1 3)L(a,b), 4C(a,b) 十 (1 4)P

6、(a,b) E(a,b) 4C(a,b) 十 (1 4)P(a,b) hold for all a,b 0 with a b, where C(a,b), Mq(a,b), G(a,b), L(a,b), P(a,b) and E(a,b) be the contraharmonic mean, golden section mean, geometric mean, logarithmic mean, Seifert,s mean and centroidal mean of two positive numbers a and b, respectively. Keywordsconvex

7、 combination boundgolden section meangeometric meanlog- arithmic meanSeifert meancentroidal meancontraharmonic mean II ? ? ?1?. . 1 ?2?1.1-1.4?6 ?. 16 ?.18 ? 20 ?. 21 III Contents Contents Chapter 1Introduction and Statement of Results1 Chapter 2Proof of Theorems 1.1-1.4 6 Epilogue 16 References18 A

8、cknowledgements.20 Theses of written during postgraduate period21 IV Chapter 1Introduction and Statement of Results Chapter 1Introduction and Statement of Results Let a and b be positive real numbers with a b. The arithmetic mean, geometric mean and logarithmic mean of a and b are dehned by A(a,b) a

9、 十 b 2 , G G(a,b) ) ab and L L(a,b) a b loga logb respectively. It is well-known that for a b one has (see e.g. 1) G(a,b) L(a,b). In 1993, Seifert 2 introduced the mean P P(a,b) a b 4arctan JO b , and proved in 2 that for a b L(a,b) P(a,b). Many remarkable inequalities for the Seifert,s mean can be

10、found in the literature 3- 8. The Seifert,s mean P(a,b) and the second Seifert,s mean can be rewritten as (see 5,(2.4) P(a,b) a b 2arcsin O b Ob and T(a,b) a b 2arctanO b Ob The golden section mean Mq(a,b) is dehned by Mq(a,b) q(Ob)2Ob 2q(Ob) where q 1V5 2 . We refer the readers to 9,10 for general

11、information about the golden section mean. -1- ? The centroidal mean, harmonic mean and contraharmonic mean are dehned as E(a,b) 2 3 (a2 十 b2十 ab a 十 b ) , H(a.b) 2ab a 十 b and C(a,b) a2十 b2 a 十 b respectively. In order to establish our main results we need two double inequalities, which we present

12、in this section. Lemma 1.1 For q 1V5 2 , the double inequality H(a,b) Mq(a,b) E(a,b) holds for all a,b 0 with a b. PToof Firstly, we prove that for a,b 0 with a b, H(a,b) Mq(a,b). Without loss of generality, we assume a b. Let t O b 1. Then 1 b (Mq(a,b) H(a,b) Mq(t,1) H(t,1) q(t 1)2 (2q 十 t 十 1)(t 十

13、 1) 0. Secondly, we prove that for a,b 0 with a b, Mq(a,b) E(a,b) Without loss of generality, we assume a b. Let t O b 1. Then 1 b (Mq(a,b) E(a,b) Mq(t,1) E(t,1) (t 1)2(2t 十 q 十 2) 3(t 十 1)(2q 十 t 十 1) 0. -2- Chapter 1Introduction and Statement of Results Lemma 1.2 The double inequality T(a,b) E(a,b

14、) C(a,b) holds for all a,b 0 with a b. PToof Firstly, we prove that for a,b 0 with a b, E(a,b) C(a,b) Without loss of generality, we assume a b. Let t O b 1. Then 1 b (E(a,b) C(a,b) E(t,1) C(t,1) (t 1)2 3(t 十 1) 0. Secondly, we prove that T(a,b) E(a,b) Let t O b 1. Then 1 b (E(a,b) T(a,b) E(t,1) T(t

15、,1) t2十 t 十 1 6(t 十 1)arctan t 1 t1 h(t), where h(t) 4arctan t 1 t 十 1 3(t2 1) t2十 t 十 1. Since lim tH1十 h(t) 0, hI(t) 3t4十 4t3十 10t2十 4t 十 3 (t2十 1)(t2十 t 十 1)2 0, then by the continuity of h(t), we get h(t) 0, which implies that T(a,b) E(a,b). Combining Lemmas 1.1 and 1.2 and the known results on means, we have mina,b H(a,b) G(a,b) L(a,b) P(a,b) T(a,b) E(a,b)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号