【大学数学】重新理解系列之三:抽象代数.doc

上传人:F****n 文档编号:102386900 上传时间:2019-10-02 格式:DOC 页数:48 大小:633.50KB
返回 下载 相关 举报
【大学数学】重新理解系列之三:抽象代数.doc_第1页
第1页 / 共48页
【大学数学】重新理解系列之三:抽象代数.doc_第2页
第2页 / 共48页
【大学数学】重新理解系列之三:抽象代数.doc_第3页
第3页 / 共48页
【大学数学】重新理解系列之三:抽象代数.doc_第4页
第4页 / 共48页
【大学数学】重新理解系列之三:抽象代数.doc_第5页
第5页 / 共48页
点击查看更多>>
资源描述

《【大学数学】重新理解系列之三:抽象代数.doc》由会员分享,可在线阅读,更多相关《【大学数学】重新理解系列之三:抽象代数.doc(48页珍藏版)》请在金锄头文库上搜索。

1、【大学数学】重新理解系列之三:抽象代数我学过一学期的抽象代数,但感觉啥都没学到,对那些定义、定理没啥理解,完全就是考验记忆能力,但是下面的几篇文章居然勾起了哥学习抽象代数的欲望,对现代数学三大支柱一直的抽象代数感兴趣的同学可以慢慢看看,其实学习一门数学课时先读读这方面的科普文章,对整体把握和学习效果有非常大的提升。文章列表:1. 初学者应该如何学习抽象代数2. 漫谈抽象代数(非常好)3. 抽象代数不抽象4. 抽象代数的人间烟火5. 抽象代数学习方法6. 近世代数概论前言7. 近世代数学习方法(之后的几篇文章还没来得及看)8. 群论问题与物理问题(和众多牛人的讨论总结)9. 近世代数基础课件(感

2、觉很不错)10. 近世代数发展简史11. 近世代数的应用12. 抽象代数学习报告初学者应该如何学习抽象代数曾经看到一些抽象代数(近世代数)的初学者有这样的疑问:我们为什么要研究像群这样的抽象结构呢?有人解释说这是刻画对称性,也有人解释说是现代数学的一种语言,有点道理却又语焉不详。【为什么学抽象代数?多么实际而迫切的问题,但学了也没能回答这个问题。既然抽象代数研究的是结构,那么就对应数学物理工程医学中的实际的结构,如化学中物质结构、网络结构等等,我觉得都是可以用上去的,这都是一下想到的,没有详细去考证。】为什么要研究群呢?提出这类问题的人困惑的并不是群的本质,而是需要一个合理的过渡,我觉得从具体

3、的代数到抽象代数之间的过渡可以类比于从算术到普通代数的过渡。记得我第一次遇到代数时感到很奇怪,为什么一眼就能看出答案的问题,非要设个未知量x来解方程。直到后来发现几个x可以抵消,我才算领会了方程的方便,再后来遇到二次的情形就非要列方程不可了。如果说方程中字母x代表某个数的话,那么群中的字母g又代表什么呢?它不仅代表处在某个地位上的数,更是代表一个特殊的位置,这样的位置是与整个群的结构相互联系的。比如在三阶循环群中,两个生成元尽管作为数是不同的,但它们在群的地位却是一致的。正如普通代数中忽略了数的已知与未知那样,抽象代数中忽略的则是具体数的差异,而集中考虑相应的位置与结构。【普通代数中忽略了数的

4、已知与未知那样,抽象代数中忽略的则是具体数的差异,而集中考虑相应的位置与结构?不太懂。】有的人总是想借助直观来理解抽象,但这对抽象代数的入门却是一个妨碍。还有回忆学习普通代数的情形,如果在学习普通代数的时候固执于用数值检验未知数x,并不能让你真正领会x的精神,只有直接用x来进行运算,才能在此基础上领会高级的直观。抽象代数的学习也需要领会相应的高级直观,这里的直观重在代数的结构,因此初学者就应该特别注意那些关于结构的定理。第一个结构定理大概就是同态基本定理,由此可以更加深刻的理解商群。此后,一个非常自然的结构定理就是有限Abel结构定理,如果你能够依据此定理确定任意Abel群的结构,那么可以说你

5、基本上已经算是入门了。此后,就可以考虑对付非Abel群的武器,最初级的武器共轭类,由此衍生出正规子群的概念,而更加深刻的武器则是Sylow定理。仅仅作为入门的话,能理解Sylow定理也应该算是足够了。【结构定理是抽象代数的核心。需要用高级的直观来理解抽象的东西,不过借助低级直观能帮助我们理解抽象的东西,从而建立高级直观。】群的上面还有环、域、模等代数结构,这里只是简单提一下它们之间的关系。如果说群是青少年的话(半群就是儿童了);那么环与域就是中年人,除了加法之外还增加了一个乘法;而模与向量空间则是老年人,它把环或域作为系数,自身还保留有类似群的加法。这里我要提醒一下,Abei群其实有着双重身份

6、,它作为群的同时又是一个整数环Z上的模,不妨就管他叫老顽童吧。如果像群变环那样,在模上面再引入一个乘法会怎么样呢?也不知为什么,得到的东西就干脆的称为代数。其实,只要能把注意把握结构,抽象代数的入门应该不是太困难,我甚至提议数学专业课是不是可以一开始就群论讲起,这可以促使学生尽早完成代数思维的转变。只要走过了这道门槛,后面还有更加丰富多彩的内容等着你们呢!【抽象代数的入门就是抓住本门课的核心思想:结构思想和抽象思维】漫谈抽象代数你若是没有认真看过代数,你就不能准确地估计数学到底有多么深刻;你若是没有认真看过代数,你也不能明白为什么抽象的理论也能为人类思维所把握代数中最不可理解的就是,代数竟然是

7、可以理解的。【好一个排比!突出了抽象代数的抽象性(能抓住本质和深刻)】代数的深刻来自数学思想,而不是运算论运算,微分和积分都比它复杂得多,这就是物理大师Feynman选择矩阵而不是偏微分方程来给低年级本科生讲述量子力学的原因(参阅Feynman物理学讲义卷III,赵凯华的新概念量子物理也用的是这种讲法:因为矩阵和代数运算更接近高中数学,几乎每个读过物理奥赛书的同学都会用行列式求解电路的基尔霍夫方程组奥赛总是尽量回避微积分,必要的时候就用“小量分析”代替,并且取名为“微元法”、“近似法”,但就是不说这是微积分)。其实,运算的艰深算不得深刻,至多只能算繁琐(譬如电力系统和集成电路,分析和运算极其复

8、杂,但用到的不过是普通物理和固体物理之类的低级知识,根本用不上相对论、量子力学、量子场论这类思想深刻的东西)。它没有几何那么直观(因此许多人不喜欢它,嫌它太抽象),确实(对于物理学家来说),但换个角度来看,这反倒是它的优点:一方面,在它的世界里,你不必担心自己的空间想象能力(和你的同行相比,你的逻辑推理能力恰好可以弥补空间想象能力的不足);另一方面,就数学本身而言,人类总是不可避免要面对一些高维(甚至无限维)的客体,这时,不仅你想象不出来,其他人也想象不出来,这正是代数大显身手的地方。有人说,抽象有什么好,我想象不出来。其实你那是先给自己灌输了一个错误观念,即一个事物只有当它可以想象出来才是真

9、实的,才能接受。为什么非要想象出来呢?只要依循着逻辑一步步严密地推理就足够了,因而这种担心完全是不必要的。所以,你可以把数学看得很神圣,但不要把它看得很神秘望而生畏会阻碍你的进步。【代数不研究具体运算,几何中看不中用,代数中用不中看,只需逻辑推演,无需太强的空间几何想象能力】代数的魅力就在于,深刻又易于思考,哪怕你对研究对象一无所知,也能依循着逻辑去思考它那么简单,简单到只需要逻辑(除此之外再也不需要别的了)就能把握真理(你必须相信,纯理论可以主宰世界);但它的思想又那么深刻,深刻到所有几何都能统一用变换群来描述。现在觉得,几何与代数的特点很像普通物理与理论物理:前者注重说明现象,后者注重说明

10、本质。譬如折射:前者注重折射现象(筷子放入水中后变弯了),后者注重折射定律(不管你变成什么形状了,反正都是nsin=nsin)。曾经我很迷恋几何(各种奇妙曲线和曲面),就像当初迷恋普通物理(各种奇妙现象);现在我转向理论物理,更愿意从纯理性的角度去思考一些本质(透过现象看本质),对数学也因而更偏重代数。代数和理论物理的美是内敛的,就像那种内敛的人,长得很抽象,你不去接近她而只是从外部看看,就不会发现她的魅力所在。【代数的好处深刻又易于思考,抽象的好处是能抓住本质,透过现象看本质。】抽象有什么好?抽象可以使理论更加普适。什么欧式几何、仿射几何、射影几何、微分几何林林总总,眼花缭乱。它们之间就没有

11、联系吗?有!不识几何真面目,只缘身在几何中必须从几何中跳出来,才能旁观者清。这个旁观者就是代数。1872年,德国数学家Klein在Erlangen大学的报告中指出,一种几何学可以用公理化方法来构建,也可以把变换群和几何学联系起来,给几何学以新的定义:给出集合S和它的一个变换群G,对于S中的两个集合A和B,如果在G中存在一个变换f使f(A)=B,则称A和B等价。可以根据等价关系给集合分类,凡是等价的子集属于同一类,不等价的子集属于不同的类。将这一代数理论翻译到几何中,相应的版本便是:集合S叫做空间,S的元素叫做点,S的子集A和B叫做图形,凡是等价的图形都属于同一类(图形等价类)。于是同一类里的一

12、切图形所具有的几何性质必是变换群G下的不变量,因而可用变换群来研究几何学这就是著名的Erlangen纲领,它支配了自它以来半个世纪的所有几何学的研究。例如,在正交变换群下保持几何性质不变的便是欧式几何,在仿射变换群下保持不变的便是仿射几何,在射影变换群下保持不变的便是射影几何,在微分同胚群下保持不变的便是微分几何。【终于了解了点Erlangen纲领的思想,即变换群下的不变量,同一类中图形的共同几何性质,就可以根据不变量对图形进行分类,图形等价】上面说的是图形等价关系。代数的普遍性在于,它将各种各样的相关的、不相关的事物放在一起比较,然后从这些个性的事物中提炼出共性的东西来,比如等价关系。除了上

13、面提到的图形等价关系,还有各种各样的等价关系(如同“群公理:只要满足能封闭、可结合、有恒元和逆元的集合就是群”一样,只要满足反身、对偶、传递这三条的关系就是等价关系这样简单的条件当然很容易满足,曲不高则和不寡,所以类似的例子不胜枚举),例如,同余等价关系。我们可以按余数给整数分类,余数相同的归为一类,即同余类。代数对于普遍性的追求在于,发现同余类后并不就此止步,而是精益求精,进一步去提炼更具普遍性的概念。既然等价的图形和等价的余数都可以归为等价类,何不将等价类做成一个集合呢?由此,又发现了商集(即在一个集合中给定了一个等价关系之后相对于这个等价关系而言的等价类所构成的集合,通俗地说就是将每一个

14、等价类中所有点“粘合”为一个点而得到的集合,如Mbius带和Klein瓶)、商空间(以同余类为元素构成的集合)、商群(以陪集为元素构成的集合)等概念。【等价类的思想贯穿于整个代数,由此引出各种概念】刚才说了等价关系。类似的例子还有很多,再比如说基矢。只要同类的一组元素互不相关,就能充当空间的一组基(将一个量展开为其他量的线性组合,此即泛函分析中的谱定理),哪怕它不是向量(因而生成的不是几何空间)也无所谓,比如它可以是一组函数(由此生成无限维空间,如量子力学中的Hilbert空间)。甚至,它可以是一个不确定(如无穷小量,要多小有多小但又不是零,到底多大只有上帝清楚)的微分元(比如dx、dy、dz

15、,微分几何中用到的外微分形式就是用这些微分元为基矢张成的空间微分几何运算很复杂,但构成它的理论基础之一Grassmann代数并不是特别复杂)。可见,代数的理论是相当普适的。【微分几何=几何+代数+分析,谱定理就是向量在基上的分解定理】代数为什么能普适?因为它总是通过不断的抽象来提炼更加基本的概念。用哲学的话说,便是从具体到抽象,从特殊到一般(例如两个群,不论它们的元素多么地不同,只要运算性质相同,彼此就是同构的,并且可以因此认为是相同的代数对象而不加区别;不论膨胀、收缩、转动、反演都可以统一起来,那就是指数函数;不论弦振动、声音、流体、电磁波都可以统一起来,它们在数学中都是双曲型方程)。每一次

16、抽象都是一次“扬弃”(留其精髓,去其平庸)的过程。比如将“距离”概念抽象化而提炼出“单比”概念,进一步将“单比”抽象化而提炼出“交比”概念,于是,从欧式几何中舍弃“距离不变”而保留更普遍的“单比不变”,得到仿射几何;从仿射几何中舍弃“单比不变”而保留更普遍的“交比”,得到一般的射影几何。从欧式空间(长度,夹角)到内积空间(模,不严格的夹角)再到赋范空间(范,完全抛弃夹角)也是如此,不断的改良(抽象、提炼),一改再改,但最终改到不能再改时,就完成了一个革命甚至连范数(最熟悉因而最不愿抛弃的度量或度规)也抛弃了,从不严格的距离发展到不确定的距离(邻域,就像前面提到的无穷小量一样不确定),得到了里程碑式的“拓扑空间”的概念有史以来最广泛最深刻的革命!【每种几何就对应某个量的不变性,在这有了精彩阐述。因为抽象所以普适,因为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号