第二章有理数的运算,周测(2.2),一、选择题,(,共,10,题,,,每题,4,分,,,共,40,分,),1.,计算,5,(,2)3,的结果等于,(,A,),A,.,11,B,.,1,C,.,1,D,.,11,【解析】原式,5,6,11.,2.,(2024,保定期末,),5,的倒数是,(,C,),A,.,5,B,.,5,C,.,D,.,A,C,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,3,.,下列计算中,,,正确的是,(,A,),A,.,2,2,0,B,.,(,4),(,2),6,C,.,3,1,D,.,2,A,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,【解析】,A.,正确;,B.(,4),(,2),4,2,2,,故该选项错误;,C.,3,1,,故该选项错误;,D.,(,3),2,,故该选项错误;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,4,.,(2024,廊坊期末,),老师设计了计算接力游戏,,,规则是每名同学只能利,用前面一个同学的式子进行下一步计算,,,将计算的结果传给下一个同,学,,,最后解决问题,.,过程如图所示,,,自己负责的那一步错误的是,(,A,),A,.,甲,B,.,乙,C,.,丙,D,.,丁,A,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,5,.,如果有理,数,a,,,b,在数轴上所对应的点的位置如图所示,,,那么下列式,子中成立的是,(,D,),A,.,a,b,0,B,.,a,b,C,.,(,b,1)(,a,1),0,D,.,0,D,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,【解析】由数轴,可得,a,1,,,0,b,1.,A.,a,b,0,,该选项不成立;,B.,a,b,,该选项不成立;,C.,由,a,1,,,0,b,1,,得,b,1,0,,,a,1,0,,则,(,b,1)(,a,1),0,,该选项不成立;,D.,由,a,1,,,0,b,1,,得,b,1,0,,,a,1,0,,则,0,,该选项,成立,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,6,.,关于有理数,,,下列说法不正确的是,(,B,),A,.,一个负,数,a,和它的相反数的差的绝对值等于,2,a,B,.,一个有理数和它的相反数的乘积必为负数,C,.,任何一个有理数同,0,相加的和等于这个数同,1,相乘的积,D,.,如果两个有理数的积是负数,,,和是正数,,,那么它们符号相反,,,且正,数的绝对值大,【解析】一个有理数和它的相反数的乘积为负数或,0,,所以选项,B,不,正确,.,B,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,7,.,解决下列问题时,,,列出的算式的值与,1,不相等的是,(,C,),A,.,已知一段绳子长,1,米,,,若剪掉它,的,,,求剩下的绳长,B,.,已知一个长方形的长为,1,,,宽,为,,,求长方形的面积,C,.,若,1,除以一个数,,,所得商,为,,,求这个数,D,.,若一个数除以,1,,,所得商,为,,,求这个数,【解析】,C.,列出算式是,1,,该选项符合题意,.,C,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,8,.,(2023,石家庄赵县月考,),对于,(,3),4,,,含有括号的因数减小,1,后积的,变化是,(,C,),A,.,减小,3,B,.,增加,3,C,.,减小,4,D,.,增加,4,9,.,(2023,保定清苑区期中,),已知,x,4,,,y,3,,,且,x,y,0,,,则,x,y,的值等于,(,A,),A,.,1,或,1,B,.,5,或,5,C,.,5,或,1,D,.,5,或,1,C,A,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,【解析】因为,x,4,,,y,3,,,所,以,x,4,,,y,3.,又因,为,x,y,0,,,所,以,x,4,,,y,3,或,x,4,,,y,3.,所,以,x,y,4,3,1,或,x,y,(,4),(,3),1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,10,.,有以下说法,:,5,个有理数相乘,,,其中负数有且只有,3,个,,,那么所得,积为负数,;,若,m,满足,m,m,0,,,则,m,0,;,如,果,,,那,么,a,b,;,5,a,5,的最大值为,5,.,其中正确的个数为,(,B,),A,.,0,个,B,.,1,个,C,.,2,个,D,.,3,个,B,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,如,果,,那,么,a,与,b,的大小不能判断,例,如,a,3,,,b,2,,满,足,,但,是,a,b,,该说法错误;,a,5,0,,存在最小值,0,,故,5,a,5,的最大值为,5,,该说法,正确,.,【解析】,5,个有理数相乘,其中负数有且只有,3,个,那么所得积可能为,负数,也可能为,0,,该说法错误;,若,m,满足,m,m,0,,,则,m,0,,故该说法错误;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,二、填空题,(,共,4,题,,,每题,5,分,,,共,20,分,),11,.,(2024,石家庄期末,),定义一种新运算,“,”,,,规定有理,数,a,b,4,a,b,b,,,如,:,2,3,4,2,3,3,21,.,根据该运算计算,:,3,(,3),.,【解析】,3(,3),43(,3),(,3),36,3,33.,33,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,12,.,有以下说法,:,若,a,b,0,,,则,a,0,,,b,0,;,若,a,b,0,,,则,a,0,,,b,0,;,若,a,b,0,,,则,a,或,b,至少有一个为,0,;,若,a,b,0,,,且,a,b,0,,,则,a,0,,,b,0,.,其中正确的有,(,填序号,),.,【解析】,若,a,b,0,,,则,a,,,b,同号,,,a,0,,,b,0,或,a,0,,,b,0,,故,错误;,若,a,b,0,,,则,a,,,b,异号,,,a,0,,,b,0,或,a,0,,,b,0,,故,错误;,正确,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,13,.,四个各不相等的整,数,a,,,b,,,c,,,d,,,它们的积是,9,,,那,么,a,b,c,d,的值是,.,【解析】因为,9,1(,1)3(,3),,,所,以,a,b,c,d,1,(,1),3,(,3),0.,此题主要考查了有理数的乘法及加法,由,于,abc,d,9,,,且,a,,,b,,,c,,,d,是整数,所以把,9,分解成四个不相等的整数的积,从而可确,定,a,,,b,,,c,,,d,的值,进而求其和,解题的关键在于把,9,分解成四个不相等的,整数的积,确定出这四个数,.,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,14,.,【教材第,49,页第,13,题改编】,给一间房间铺地板,,,选用边长为,3,分米,的方砖需要,240,块,,,若选用边长为,6,分米的方砖,,,需要,块,.,【解析】,33240(66),924036,2,16036,60.,60,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,三、解答题,(,共,4,题,,,共,40,分,),15,.,(9,分,),计算,:,(1)45,(,25),;,解,:,原式,33,100,1,3,300,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(2)25,(,25),25,;,解,:,原式,25,25,25,25,25,1,25,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(3,),.,解,:,原式,(,4),3,(,1),2,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,16,.,(9,分,),(2023,石家庄月考,),老师布置了一道练习,:,计算,(,16),12,.,嘉嘉和淇淇一起做这道题,.,嘉嘉的解答过程,:,解,:,原式,(,16),12(,第一步,),(,16),(,1)(,第二步,),16,.,(,第三步,),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,淇淇的解答过程,:,解,:,原式,(,16),12(,第一步,),64,4(,第二步,),68,.,(,第三步,),(1),嘉嘉解题过程中开始出现错误的是第,步,;,淇淇解题过程中开,始出现错误的是第,步,;,二,一,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(2),把正确的解题过程写出来,.,解,:,(,16),12,(,16),12,(,16),(,12),12,192,12,2,304,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(1),嘉嘉在第二步计算时,应按照从左到右的顺序依次计算;,淇淇第一步计算时,应该先计算括号里面的,.,(2),按照有理数的混合运算法则进行,先计算括号里面的,再从左,到右依次计算乘除,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,17,.,(10,分,),我国是世界上最早使用负数的国家,,,用正,、,负数表示具有相,反意义的量能简化运算,,,例如,:,李师傅是一名网约车司机,,,他连续,7,天,记录了每天行驶的路程,,,以,100,km,为标准,,,超过的部分用正数表示,,,不足的部分用负数表示,.,得到的数据,(,单位,:,km),如下,:,10,,,8,,,9,,,2,,,2,,,5,,,4,.,(1),这,7,天李师傅驾驶汽车行驶的总路程是多少,?,解:,(1),由题意,知,1007,10,8,9,2,2,5,4,702(km),,,即这,7,天李师傅驾驶汽车行驶的总路程为,702,km.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,(2),已知李师傅的汽车是新能源汽车,,,每行驶,100,km,耗电,12,度,,,且使用,家用充电桩充电的价格是每度电,0,.,5,元,,,那么这,7,天该汽车的耗电费用约,为多少元,?,(,结果保留整数,),解:,(2),由题意,,知,120.5,42.1242(,元,),,,所以这,7,天该汽车的耗电费用约为,42,元,.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,.,(12,分,),【总结提炼】,小明学习了绝对值的性质后,,,有这样的思考和,总结,:,当,a,0,时,,,a,a,,,则,1,;,当,a,0,时,,,a,a,,,则,1,.,【解决问题】,(1),若,a,b,0,,,则,;,2,或,2,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,解:,(2),因为,abc,0,,,所以有两种情况,有一个负数和两个正数或三个均为负数,.,当,a,0,,,b,0,,,c,0,时,则,1,1,1,3,;,当有两个正数和一个负数时,假设,a,0,,,b,0,,,c,0,,则,1,1,1,1.,综上所述,若,abc,0,,,的值。