FibonacciNumbersandtheGoldenRatio

上传人:cl****1 文档编号:592508504 上传时间:2024-09-21 格式:PPT 页数:78 大小:1.10MB
返回 下载 相关 举报
FibonacciNumbersandtheGoldenRatio_第1页
第1页 / 共78页
FibonacciNumbersandtheGoldenRatio_第2页
第2页 / 共78页
FibonacciNumbersandtheGoldenRatio_第3页
第3页 / 共78页
FibonacciNumbersandtheGoldenRatio_第4页
第4页 / 共78页
FibonacciNumbersandtheGoldenRatio_第5页
第5页 / 共78页
点击查看更多>>
资源描述

《FibonacciNumbersandtheGoldenRatio》由会员分享,可在线阅读,更多相关《FibonacciNumbersandtheGoldenRatio(78页珍藏版)》请在金锄头文库上搜索。

1、FibonacciNumbersandtheGoldenRatioSayWhat?What is the Golden Ratio?Well,beforeweanswerthatquestionletsexamineaninterestingsequence(orlist)ofnumbers.Actuallytheseriesstartswith0,1buttomakeiteasierwelljuststartwith:1,1TogetthenextnumberweaddtheprevioustwoTogetthenextnumberweaddtheprevioustwonumberstoge

2、ther.Sonowoursequencebecomesnumberstogether.Sonowoursequencebecomes1,1,2.Thenextnumberwillbe3.Whatdoyou1,1,2.Thenextnumberwillbe3.Whatdoyouthinkthenextnumberinthesequencewillbe?thinkthenextnumberinthesequencewillbe?Remember,weaddtheprevioustwonumberstoRemember,weaddtheprevioustwonumberstogetthenext.

3、Sothenextnumbershouldbe2+3,orgetthenext.Sothenextnumbershouldbe2+3,or5.Hereiswhatoursequenceshouldlooklikeifwe5.Hereiswhatoursequenceshouldlooklikeifwecontinueoninthisfashionforawhile:continueoninthisfashionforawhile:1,1,2,3,5,8,13,21,34,55,89,144,233,377,6101,1,2,3,5,8,13,21,34,55,89,144,233,377,61

4、0Now,Iknowwhatyoumightbethinking:WhatdoesthishavetodowiththeGoldenRatio?Thissequenceofnumberswasfirst“discovered”byamannamedLeonardoFibonacci,andhenceisknownasFibonaccissequence.Math GEEKReallyFamousReallySmartLeonardoFibonacciTherelationshipofthissequencetotheGoldenRatioliesnotintheactualnumbersoft

5、hesequence,butintheratiooftheconsecutivenumbers.Letslookatsomeoftheratiosofthesenumbers:1,1,2,3,5,8,13,21,34,55,89,144,233,377,6101,1,2,3,5,8,13,21,34,55,89,144,233,377,6102/1=2.03/2=1.55/3=1.678/5=1.613/8=1.62521/13=1.61534/21=1.61955/34=1.61889/55=1.618Since a Ratio is basically a fraction (or a d

6、ivision problem) we will find the ratios of these numbers by dividing the larger number by the smaller number that fall consecutively in the series.So, what is the ratio of the 2nd and 3rd numbers?Well, 2 is the 3rd number divided by the 2nd number which is 12 divided by 1 = 2And the ratios continue

7、 like this.Aha!Noticethataswecontinuedownthesequence,theratiosseemtobeconvergingupononenumber(frombothsidesofthenumber)!2/1=2.0(bigger)(bigger)3/2=1.5(smaller)(smaller)5/3=1.67(bigger)(bigger)8/5=1.6(smaller)(smaller)13/8=1.625(bigger)(bigger)21/13=1.615(smaller)(smaller)34/21=1.619(bigger)(bigger)5

8、5/34=1.618(smaller)(smaller)89/55=1.618FibonacciNumbercalculator5/3=1.675/3=1.678/5=1.68/5=1.613/8=1.62513/8=1.62521/13=1.61521/13=1.61534/21=1.61934/21=1.61955/34=1.61855/34=1.61889/55=1.61889/55=1.618 NoticethatIhaveroundedmyratiostothethirddecimalNoticethatIhaveroundedmyratiostothethirddecimalpla

9、ce.Ifweexamine55/34and89/55moreclosely,wewillplace.Ifweexamine55/34and89/55moreclosely,wewillseethattheirdecimalvaluesareactuallynotthesame.Butseethattheirdecimalvaluesareactuallynotthesame.Butwhatdoyouthinkwillhappenifwecontinuetolookatthewhatdoyouthinkwillhappenifwecontinuetolookattheratiosasthenu

10、mbersinthesequencegetlargerandratiosasthenumbersinthesequencegetlargerandlarger?Thatsright:theratiowilleventuallybecomethelarger?Thatsright:theratiowilleventuallybecomethesamenumber,andthatnumberistheGoldenRatio!samenumber,andthatnumberistheGoldenRatio!11231.500000000000000051.666666666666670081.600

11、0000000000000131.6250000000000000211.6153846153846200341.6190476190476200551.6176470588235300891.61818181818182001441.61797752808989002331.61805555555556003771.61802575107296006101.61803713527851009871.61803278688525001,5971.61803444782168002,5841.61803381340013004,1811.61803405572755006,7651.618033

12、963166710010,9461.618033998521800017,7111.618033985017360028,6571.618033990175600046,3681.618033988205320075,0251.6180339889579000TheGoldenRatioiswhatwecallanirrationalnumber:ithasaninfinitenumberofdecimalplacesanditneverrepeatsitself!Generally,weroundtheGoldenRatioto1.618.Here is the decimal value

13、of Phi to 2000 places grouped in blocks of 5 Here is the decimal value of Phi to 2000 places grouped in blocks of 5 decimal digits. The value of phi is the same but begins with 06. decimal digits. The value of phi is the same but begins with 06. instead of 16. . instead of 16. . Read this as ordinar

14、y text, in lines across, so Phi is 161803398874.)Read this as ordinary text, in lines across, so Phi is 161803398874.) DpsDps: :1618033988749894848204586834365638117720309179805761618033988749894848204586834365638117720309179805765050286213544862270526046281828621354486227052604628189024497072072041

15、893911374902449707207204189391137410010084754088075386891752126633862223536931793180060766726358475408807538689175212663386222353693179318006076672635443338908659593958290563832266131992829026788443338908659593958290563832266131992829026788200200067520876689250171169620703222104320675208766892501711

16、696207032221043216269548626296313614438149758701220340805887954454749246185695364162695486262963136144381497587012203408058879544547492461856953643003008644492410864449241044320771344947049565846788509874339442212544877066478091588460749988712400765217443207713449470495658467885098743394422125448770

17、664780915884607499887124007652170575179788057517978840040034166256249407589069704000281210427621771117778053153171410117046665993416625624940758906970400028121042762177111777805315317141011704666599146697987317613560067087480710146697987317613560067087480710500500131795236894275219484353056783002287

18、856997829131795236894275219484353056783002287856997829778347845878228911097625003026961561700250464338243776486102838312683303724292677783478458782289110976250030269615617002504643382437764861028383126833037242926752631165339247316711121158818638513316203840052221657912866752946549068113171599526311

19、653392473167111211588186385133162038400522216579128667529465490681131715993432359734949850904094762132229810172610705961164562990981629055520852479035240634323597349498509040947621322298101726107059611645629909816290555208524790352406020172799747175342777592778625619432082750513121815628551222480939

20、471234145170220201727997471753427775927786256194320827505131218156285512224809394712341451702237358057727861600868838295230459264787801788992199027077690389532196819861514378373580577278616008688382952304592647878017889921990270776903895321968198615143780314997411069260886742962267575605231727775203

21、536139362031499741106926088674296226757560523172777520353613936210001000107673893764556060601076738937645560606059216589466759551900400555908950229530942312482355592165894667595519004005559089502295309423124823552122121221241544400647034056573479724154440064703405657347976639723949499465845788730396

22、230903750339938562102423690251386804145779956981224466397239494994658457887303962309037503399385621024236902513868041457799569812244574717803417312645322041639723213404444948730231541767689375210306873788034417005747178034173126453220416397232134044449487302315417676893752103068737880344170093954409

23、627955898678723209512426893557309704509595684401755519881921802064052905939544096279558986787232095124268935573097045095956844017555198819218020640529055189349475926007348522821010881946445442223188913192946896220023014437702699230051893494759260073485228210108819464454422231889131929468962200230144

24、377026992300780308526118075451928877050210968424936271359251876077788466583615023891349333317803085261180754519288770502109684249362713592518760777884665836150238913493333122310533923213624319263728910670503399282265263556209029798642472759772565508615223105339232136243192637289106705033992822652635

25、562090297986424727597725655086154875435748264718141451270006023890162077732244994353088999095016803281121943204848754357482647181414512700060238901620777322449943530889990950168032811219432048196438767586331479857191139781539780747615077221175082694586393204565209896985551964387675863314798571911397

26、815397807476150772211750826945863932045652098969855567814106968372884058746103378105444390943683583581381131168993855576975484149144678141069683728840587461033781054443909436835835813811311689938555769754841491445341509129540700501947754861630754226417293946803673198058618339183285991303960753415091

27、2954070050194775486163075422641729394680367319805861833918328599130396072014455950449779212076124785645916160837059498786006970189409886400764436170933420144559504497792120761247856459161608370594987860069701894098864007644361709334172709191433650137151727091914336501371520002000 Weworkwithanotherim

28、portantirrationalnumberinGeometry:pi,whichisapproximately3.14.SincewedontwanttomaketheGoldenRatiofeelleftout,wewillgiveititsownGreekletter:phi. Phiwhich is equal to:OnemoreinterestingthingaboutPhiisitsOnemoreinterestingthingaboutPhiisitsreciprocal.Ifyoutaketheratioofanynumberinreciprocal.Ifyoutaketh

29、eratioofanynumberintheFibonaccisequencetothenextnumber(thisistheFibonaccisequencetothenextnumber(thisisthereverseofwhatwedidbefore),theratiowillthereverseofwhatwedidbefore),theratiowillapproachtheapproximation0.618.Thisistheapproachtheapproximation0.618.ThisisthereciprocalofPhi:1/1.618=0.618.Itishig

30、hlyreciprocalofPhi:1/1.618=0.618.Itishighlyunusualforthedecimalintegersofanumberandunusualforthedecimalintegersofanumberanditsreciprocaltobeexactlythesame.Infact,Iitsreciprocaltobeexactlythesame.Infact,Icannotnameanothernumberthathasthiscannotnameanothernumberthathasthisproperty!Thisonlyaddstothemys

31、tiqueoftheproperty!ThisonlyaddstothemystiqueoftheGoldenRatioandleadsustoask:WhatmakesitGoldenRatioandleadsustoask:Whatmakesitsospecial?sospecial?TheGoldenRatioisnotjustsomenumberthatmathTheGoldenRatioisnotjustsomenumberthatmathteachersthinkiscool.Theinterestingthingisthatitkeepsteachersthinkiscool.T

32、heinterestingthingisthatitkeepspoppingupinstrangeplaces-placesthatwemaynotpoppingupinstrangeplaces-placesthatwemaynotordinarilyhavethoughttolookforit.Itisimportanttonoteordinarilyhavethoughttolookforit.ItisimportanttonotethatFibonaccididnotinventtheGoldenRatio;hejustthatFibonaccididnotinventtheGolde

33、nRatio;hejustdiscoveredoneinstanceofwhereitappearednaturally.Indiscoveredoneinstanceofwhereitappearednaturally.InfactcivilizationsasfarbackandasfarapartastheAncientfactcivilizationsasfarbackandasfarapartastheAncientEgyptians,theMayans,aswellastheGreeksdiscoveredEgyptians,theMayans,aswellastheGreeksd

34、iscoveredtheGoldenRatioandincorporateditintotheirownart,theGoldenRatioandincorporateditintotheirownart,architecture,anddesigns.TheydiscoveredthattheGoldenarchitecture,anddesigns.TheydiscoveredthattheGoldenRatioseemstobeNaturesperfectnumber.ForsomeRatioseemstobeNaturesperfectnumber.Forsomereason,itju

35、stseemstoappealtoournaturalinstincts.Thereason,itjustseemstoappealtoournaturalinstincts.Themostbasicexampleisinrectangularobjects.mostbasicexampleisinrectangularobjects.Lookatthefollowingrectangles:Lookatthefollowingrectangles: Nowaskyourself,whichofthemseemstobethemostNowaskyourself,whichofthemseem

36、stobethemostnaturallyattractiverectangle?Ifyousaidthefirstone,thennaturallyattractiverectangle?Ifyousaidthefirstone,thenyouareprobablythetypeofpersonwholikeseverythingtoyouareprobablythetypeofpersonwholikeseverythingtobesymmetrical.Mostpeopletendtothinkthatthethirdbesymmetrical.Mostpeopletendtothink

37、thatthethirdrectangleisthemostappealing.rectangleisthemostappealing.IfyouweretomeasureeachrectangleslengthIfyouweretomeasureeachrectangleslengthandwidth,andcomparetheratiooflengthtowidthandwidth,andcomparetheratiooflengthtowidthforeachrectangleyouwouldseethefollowing:foreachrectangleyouwouldseethefo

38、llowing:Rectangleone:Ratio1:1Rectangleone:Ratio1:1Rectangletwo:Ratio2:1Rectangletwo:Ratio2:1RectangleThree:Ratio1.618:1RectangleThree:Ratio1.618:1HaveyoufiguredoutwhythethirdrectangleistheHaveyoufiguredoutwhythethirdrectangleisthemostappealing?Thatsright-becausetheratioofmostappealing?Thatsright-bec

39、ausetheratioofitslengthtoitswidthistheGoldenRatio!ForitslengthtoitswidthistheGoldenRatio!Forcenturies,designersofartandarchitecturehavecenturies,designersofartandarchitecturehaverecognizedthesignificanceoftheGoldenRatioinrecognizedthesignificanceoftheGoldenRatiointheirwork.theirwork.Letsseeifwecandi

40、scoverwheretheGoldenRatioappearsineverydayobjects.Useyourmeasuringtooltocomparethelengthandthewidthofrectangularobjectsintheclassroomorinyourhouse(dependingonwhereyouarerightnow).Trytochooseobjectsthataremeanttobevisuallyappealing.WereyousurprisedtofindtheGoldenRatioinsomanyWereyousurprisedtofindthe

41、GoldenRatioinsomanyplaces?Itshardtobelievethatwehavetakenitforgrantedplaces?Itshardtobelievethatwehavetakenitforgrantedforsolong,isntit?forsolong,isntit?ObjectObjectLengthLengthWidthWidthRatioRatioindex cardindex cardphotographphotographpicture framepicture frametextbooktextbookdoor framedoor framec

42、omputer computer screenscreenTV screenTV screenHowaboutinmusic?LetstakealookatthepianokeyboarddoyouseeAnythingfamiliar?Countthenumberofkeys(notes)ineachofthebracketsCountthenumberofkeys(notes)ineachofthebracketsYouwillseethenumbers2,3,5,8,13.coincidence?Youwillseethenumbers2,3,5,8,13.coincidence?Doe

43、sitlookliketheFibonaccisequenceitshouldDoesitlookliketheFibonaccisequenceitshouldbecauseitis!becauseitis!How about Architecture?FindtheGoldenRatiointheParthenon.FindtheGoldenRatiointheParthenon.1.LetsstartbydrawingarectanglearoundtheParthenon,1.LetsstartbydrawingarectanglearoundtheParthenon,fromthel

44、eftmostpillartotherightandfromthebaseofthefromtheleftmostpillartotherightandfromthebaseofthepillarstothehighestpoint.pillarstothehighestpoint.2.Measurethelengthandthewidthofthisrectangle.Now2.Measurethelengthandthewidthofthisrectangle.Nowfindtheratioofthelengthtothewidth.Isthenumberfairlyfindtherati

45、oofthelengthtothewidth.IsthenumberfairlyclosetotheGoldenRatio?closetotheGoldenRatio?3.Nowlookabovethepillars.Youshouldnoticesome3.Nowlookabovethepillars.YoushouldnoticesomerectanglesonthefaceoftheParthenon.FindtheratioofrectanglesonthefaceoftheParthenon.Findtheratioofthelengthtothewidthofoneoftheser

46、ectangles.Noticethelengthtothewidthofoneoftheserectangles.Noticeanything?anything?TherearemanyotherplaceswheretheGoldenRatioTherearemanyotherplaceswheretheGoldenRatioappearsintheParthenon,allofwhichwecannotseeappearsintheParthenon,allofwhichwecannotseebecauseweonlyhaveafrontalviewofthestructure.Theb

47、ecauseweonlyhaveafrontalviewofthestructure.Thebuildingisbuiltonarectangularplotoflandwhichhappensbuildingisbuiltonarectangularplotoflandwhichhappenstobe.youguessedit-aGoldenRectangle!tobe.youguessedit-aGoldenRectangle!Once its ruined triangular pediment is restored, .the ancient temple fits almost p

48、recisely into a golden rectangle.Further classic subdivisions of the rectangle align perfectly with major architectural features of the structure. Furtherclassicsubdivisionsoftherectanglealignperfectlywithmajorarchitecturalfeaturesofthestructure.The Golden Ratio in ArtNowletsgobackandtrytodiscoverth

49、eGoldenRatioinart.WewillconcentrateontheworksofLeonardodaVinci,ashewasnotonlyagreatartistbutalsoageniuswhenitcametomathematicsandinvention.The Annunciation - The Annunciation - UsingtheleftsideofthepaintingasaUsingtheleftsideofthepaintingasaside,createasquareontheleftofthepaintingbyinsertingside,cre

50、ateasquareontheleftofthepaintingbyinsertingaverticalline.Noticethatyouhavecreatedasquareandaaverticalline.Noticethatyouhavecreatedasquareandarectangle.TherectangleturnsouttobeaGoldenrectangle.TherectangleturnsouttobeaGoldenRectangle,ofcourse.Also,drawinahorizontallinethatisRectangle,ofcourse.Also,dr

51、awinahorizontallinethatis61.8%ofthewaydownthepainting(.618-theinverseof61.8%ofthewaydownthepainting(.618-theinverseoftheGoldenRatio).Drawanotherlinethatis61.8%ofthetheGoldenRatio).Drawanotherlinethatis61.8%ofthewayupthepainting.Tryagainwithverticallinesthatarewayupthepainting.Tryagainwithverticallin

52、esthatare61.8%ofthewayacrossbothfromlefttorightandfrom61.8%ofthewayacrossbothfromlefttorightandfromrighttoleft.Youshouldnowhavefourlinesdrawnacrossrighttoleft.Youshouldnowhavefourlinesdrawnacrossthepainting.Noticethattheselinesintersectimportantthepainting.Noticethattheselinesintersectimportantparts

53、ofthepainting,suchastheangel,thewoman,etc.partsofthepainting,suchastheangel,thewoman,etc.Coincidence?Ithinknot!Coincidence?Ithinknot!The Mona Lisa - Measurethelengthandthewidthofthepaintingitself.Theratiois,ofcourse,Golden.DrawarectanglearoundMonasface(fromthetopoftheforeheadtothebaseofthechin,andfr

54、omleftcheektorightcheek)andnoticethatthis,too,isaGoldenrectangle.LeonardoLeonardodadaVincistalentasanartistmaywellVincistalentasanartistmaywellhavebeenoutweighedbyhistalentsasahavebeenoutweighedbyhistalentsasamathematician.Heincorporatedgeometryintomathematician.Heincorporatedgeometryintomanyofhispa

55、intings,withtheGoldenRatiobeingmanyofhispaintings,withtheGoldenRatiobeingjustoneofhismanymathematicaltools.Whydojustoneofhismanymathematicaltools.Whydoyouthinkheuseditsomuch?Expertsagreethatyouthinkheuseditsomuch?ExpertsagreethatheprobablythoughtthatGoldenmeasurementsheprobablythoughtthatGoldenmeasu

56、rementsmadehispaintingsmoreattractive.Maybehewasmadehispaintingsmoreattractive.Maybehewasjustalittletooobsessedwithperfection.However,justalittletooobsessedwithperfection.However,hewasnottheonlyonetouseGoldenpropertieshewasnottheonlyonetouseGoldenpropertiesinhiswork.inhiswork.Constructing A Golden R

57、ectangle Constructing A Golden Rectangle IsntitstrangethattheGoldenRatiocameupinsuchIsntitstrangethattheGoldenRatiocameupinsuchunexpectedplaces?Wellletsseeifwecanfindoutwhy.unexpectedplaces?Wellletsseeifwecanfindoutwhy.TheGreekswerethefirsttocallphitheGoldenRatio.TheyTheGreekswerethefirsttocallphith

58、eGoldenRatio.Theyassociatedthenumberwithperfection.Itseemstobepartassociatedthenumberwithperfection.ItseemstobepartofhumannatureorinstinctforustofindthingsthatcontainofhumannatureorinstinctforustofindthingsthatcontaintheGoldenRationaturallyattractive-suchastheperfecttheGoldenRationaturallyattractive

59、-suchastheperfectrectangle.Realizingthis,designershavetriedtorectangle.Realizingthis,designershavetriedtoincorporatetheGoldenRatiointotheirdesignssoastoincorporatetheGoldenRatiointotheirdesignssoastomakethemmorepleasingtotheeye.Doors,notebookmakethemmorepleasingtotheeye.Doors,notebookpaper,textbooks

60、,etc.allseemmoreattractiveiftheirsidespaper,textbooks,etc.allseemmoreattractiveiftheirsideshavearatioclosetophi.Now,letsseeifwecanconstructhavearatioclosetophi.Now,letsseeifwecanconstructourownperfectrectangle.ourownperfectrectangle.Method One1. Well start by making a square, any square (just rememb

61、er that all sides 1. Well start by making a square, any square (just remember that all sides have to have the same length, and all angles have to measure 90 degrees!):have to have the same length, and all angles have to measure 90 degrees!):2.Now, lets divide the square in half (bisect it). Be sure

62、to use your protractor 2.Now, lets divide the square in half (bisect it). Be sure to use your protractor to divide the base and to form another 90 degree angle:to divide the base and to form another 90 degree angle:Measure the length of the diagonal and make a note Measure the length of the diagonal

63、 and make a note of it. of it. Now, draw in one of the diagonals of one of the rectangles Now extend the base of the square from the midpoint Now extend the base of the square from the midpoint of the base by a distance equal to the length of the of the base by a distance equal to the length of the

64、diagonaldiagonalConstruct a new line perpendicular to the base at the end of Construct a new line perpendicular to the base at the end of our new line, and then connect to form a rectangle:our new line, and then connect to form a rectangle:Measure the length and the width of your rectangle.Measure t

65、he length and the width of your rectangle. Now, find the ratio of the length to the width.Are you surprised by the result? The rectangle you have made is called a Golden Rectangle because it is perfectly proportional.Constructing a Golden Rectangle - Method TwoConstructing a Golden Rectangle - Metho

66、d TwoNow,letstryadifferentmethodthatwillrelatetheNow,letstryadifferentmethodthatwillrelatetherectangletotheFibonacciserieswelookedat.WellstartrectangletotheFibonacciserieswelookedat.Wellstartwithasquare.Thesizedoesnotmatter,aslongasallwithasquare.Thesizedoesnotmatter,aslongasallsidesarecongruent.Wel

67、luseasmallsquaretoconservesidesarecongruent.Welluseasmallsquaretoconservespace,becausewearegoingtobuildourgoldenrectanglespace,becausewearegoingtobuildourgoldenrectanglearoundthissquare.Pleasenotethatthegoldenareaisaroundthissquare.Pleasenotethatthegoldenareaiswhatyourrectanglewilleventuallylooklike

68、.whatyourrectanglewilleventuallylooklike.Now,letsbuildanother,congruentsquarerightnexttotheNow,letsbuildanother,congruentsquarerightnexttothefirstone:firstone:Nowwehavearectanglewithawidth1andlength2units.Nowwehavearectanglewithawidth1andlength2units.Letsbuildasquareontopofthisrectangle,sothatthenew

69、Letsbuildasquareontopofthisrectangle,sothatthenewsquarewillhaveasideof2units:squarewillhaveasideof2units:Noticethatwehaveanewrectanglewithwidth2andNoticethatwehaveanewrectanglewithwidth2andlength3.length3.Letscontinuetheprocess,buildinganothersquareontheLetscontinuetheprocess,buildinganothersquareon

70、therightofourrectangle.Thissquarewillhaveasideof3:rightofourrectangle.Thissquarewillhaveasideof3:Nowwehavearectangleofwidth3andlength5.Nowwehavearectangleofwidth3andlength5.Again,letsbuilduponthisrectangleandconstructasquareunderneath,withasideof5:Thenewrectanglehasawidthof5andalengthof8.Letscontinu

71、etotheleftwithasquarewithside8:Haveyounoticedthepatternyet?Thenewrectanglehasawidthof8andalengthof13.Letscontinuewithonefinalsquareontop,withasideof13:Ourfinalrectanglehasawidthof13andalengthof21.Ourfinalrectanglehasawidthof13andalengthof21.NoticethatwehaveconstructedourgoldenrectangleusingNoticetha

72、twehaveconstructedourgoldenrectangleusingsquarethathadsuccessivesidelengthsfromtheFibonaccisquarethathadsuccessivesidelengthsfromtheFibonaccisequence(1,1,2,3,5,8,13,.)!Nowonderourrectanglesequence(1,1,2,3,5,8,13,.)!Nowonderourrectangleisgolden!Eachsuccessiverectanglethatweconstructedisgolden!Eachsuc

73、cessiverectanglethatweconstructedhadawidthandlengththatwereconsecutivetermsinthehadawidthandlengththatwereconsecutivetermsintheFibonaccisequence.SoifwedividethelengthbytheFibonaccisequence.Soifwedividethelengthbythewidth,wewillarriveattheGoldenRatio!Ofcourse,ourwidth,wewillarriveattheGoldenRatio!Ofc

74、ourse,ourrectangleisnotperfectlygolden.Wecouldkeeptherectangleisnotperfectlygolden.Wecouldkeeptheprocessgoinguntilthesidesapproximatedtheratiobetter,processgoinguntilthesidesapproximatedtheratiobetter,butforourpurposesalengthof21andawidthof13arebutforourpurposesalengthof21andawidthof13aresufficient.

75、sufficient.3421DotheMath!34dividedby21=1.61904761904Rememberthatthefartherintothesequencewegotheclosertheratiogetstobeingperfect!Thisrectangleshouldseemverywellproportionedtoyou,i.e.itshouldbepleasingtotheeye.Ifitisnt,maybeyouneedyoureyeschecked!Constructing a Golden SpiralNoticehowwebuiltourrectang

76、leinacounterclockwisedirection.ThisleadsusintoanotherinterestingcharacteristicoftheGoldenRatio.Letslookattherectanglewithallofourconstructionlinesdrawnin:Wearegoingtoconcentrateonthesquaresthatwedrew,Wearegoingtoconcentrateonthesquaresthatwedrew,startingwiththetwosmallestones.Letsstartwiththeonestar

77、tingwiththetwosmallestones.Letsstartwiththeoneontheright.Connecttheupperrightcornertothelowerleftontheright.ConnecttheupperrightcornertothelowerleftcornerwithanarcthatisonefourthofacirclecornerwithanarcthatisonefourthofacircleWearegoingtoconcentrateonthesquaresthatWearegoingtoconcentrateonthesquares

78、thatwedrew,startingwiththetwosmallestones.Letswedrew,startingwiththetwosmallestones.Letsstartwiththeoneontheright.Connecttheupperstartwiththeoneontheright.Connecttheupperrightcornertothelowerleftcornerwithanarcthatrightcornertothelowerleftcornerwithanarcthatisonefourthofacircle:isonefourthofacircle:

79、ThencontinueyourlineintothesecondsquareonThencontinueyourlineintothesecondsquareontheleft,againwithanarcthatisonefourthofatheleft,againwithanarcthatisonefourthofacircle:circle:WewillcontinuethisprocessuntileachsquareWewillcontinuethisprocessuntileachsquarehasanarcinsideofit,withallofthemconnectedhas

80、anarcinsideofit,withallofthemconnectedasacontinuousline.Thelineshouldlooklikeaasacontinuousline.Thelineshouldlooklikeaspiralwhenwearedone.Hereisanexampleofspiralwhenwearedone.Hereisanexampleofwhatyourspiralshouldlooklike:whatyourspiralshouldlooklike:GoldenSpiralmanipulativeNowwhatwasthepointofthat?T

81、hepointisthatthisgoldenspiraloccursfrequentlyinnature.Ifyoulookcloselyenough,youmightfindagoldenspiralintheheadofadaisy,inapinecone,insunflowers,orinanautilusshellthatyoumightfindonabeachoreveninyourear!Herearesomeexamples:So,whydoshapesthatexhibittheGoldenRatioseemmoreappealingtothehumaneye?Noonere

82、allyknowsforsure.ButwedohaveevidencethattheGoldenRatioseemstobeNaturesperfectnumber.SomebodywithalotoftimeontheirhandsdiscoveredthatSomebodywithalotoftimeontheirhandsdiscoveredthattheindividualfloretsofthedaisy(andofasunflowerastheindividualfloretsofthedaisy(andofasunfloweraswell)growintwospiralsext

83、endingoutfromthecenter.Thewell)growintwospiralsextendingoutfromthecenter.Thefirstspiralhas21arms,whiletheotherhas34.Dothesefirstspiralhas21arms,whiletheotherhas34.Dothesenumberssoundfamiliar?numberssoundfamiliar?Theyshould-theyareFibonaccinumbers!Andtheirratio,ofcourse,istheGoldenRatio.Wecansaythesa

84、methingaboutthespiralsofapinecone,wherespiralsfromthecenterhave5and8arms,respectively(orof8and13,dependingonthesize)-again,twoFibonaccinumbers:Apineapplehasthreearmsof5,8,and13-evenmoreevidencethatthisisnotacoincidence.NowisNatureplayingsomekindofcruelgamewithus?Nooneknowsforsure,butscientistsspecul

85、atethatplantsthatgrowinspiralformationdosoinFibonaccinumbersbecausethisarrangementmakesfortheperfectspacingforgrowth.Soforsomereason,thesenumbersprovidetheperfectarrangementformaximumgrowthpotentialandsurvivaloftheplant.Dothesefacesseemattractivetoyou?Dothesefacesseemattractivetoyou?Manypeopleseemto

86、thinkso.Butwhy?IsManypeopleseemtothinkso.Butwhy?Istheresomethingspecificineachoftheirtheresomethingspecificineachoftheirfacesthatattractsustothem,orisourfacesthatattractsustothem,orisourattractiongovernedbyoneofNaturesattractiongovernedbyoneofNaturesrules?Doesthishaveanythingtodowithrules?Doesthisha

87、veanythingtodowiththeGoldenRatio?IthinkyoualreadyknowtheGoldenRatio?Ithinkyoualreadyknowtheanswertothatquestion.Letstrytotheanswertothatquestion.LetstrytoanalyzethesefacestoseeiftheGoldenanalyzethesefacestoseeiftheGoldenRatioispresentornot.HereshowweareRatioispresentornot.Hereshowwearegoingtoconduct

88、oursearchfortheGoldengoingtoconductoursearchfortheGoldenRatio:wewillmeasurecertainaspectsofRatio:wewillmeasurecertainaspectsofeachpersonsface.Thenwewillcompareeachpersonsface.Thenwewillcomparetheirratios.Letsbegin.Wewillneedthetheirratios.Letsbegin.Wewillneedthefollowingmeasurements,tothenearestfoll

89、owingmeasurements,tothenearesttenthofacentimeter:tenthofacentimeter:a=Top-of-headtochin=cma=Top-of-headtochin=cmb=Top-of-headtopupil=cmb=Top-of-headtopupil=cmc=Pupiltoc=Pupiltonosetipnosetip=cm=cmd=Pupiltolip=cmd=Pupiltolip=cme=Widthofnose=cme=Widthofnose=cmf=Outsidedistancebetweeneyes=cmf=Outsidedi

90、stancebetweeneyes=cmg=Widthofhead=cmg=Widthofhead=cmh=Hairlinetopupil=cmh=Hairlinetopupil=cmi=i=NosetipNosetiptochin=cmtochin=cmj=Lipstochin=cmj=Lipstochin=cmk=Lengthoflips=cmk=Lengthoflips=cml=l=NosetipNosetiptolips=cmtolips=cma/g=cmb/d=cmi/j=cmi/c=cme/l=cmf/h=cmk/e=cmNow find the following ratios:

91、faceappletThe blue line defines a perfect square of the pupils and outside corners of the mouth. The golden section of these four blue lines defines the nose, the tip of the nose, the inside of the nostrils, the two rises of the upper lip and the inner points of the ear. The blue line also defines t

92、he distance from the upper lip to the bottom of the chin.The yellow line, a golden section of the blue line, defines the width of the nose, the distance between the eyes and eye brows and the distance from the pupils to the tip of the nose.The green line, a golden section of the yellow line defines

93、the width of the eye, the distance at the pupil from the eye lash to the eye brow and the distance between the nostrils.The magenta line, a golden section of the green line, defines the distance from the upper lip to the bottom of the nose and several dimensionsEvenwhenviewedEvenwhenviewedfromthesid

94、e,thefromtheside,thehumanheadhumanheadillustratestheillustratestheDivineProportion.DivineProportion.ThefirstgoldensectionThefirstgoldensection( (blueblue)fromthefrontofthe)fromthefrontoftheheaddefinesthepositionofheaddefinesthepositionoftheearopening.Thetheearopening.Thesuccessivegoldensectionssucce

95、ssivegoldensectionsdefinetheneck(definetheneck(yellowyellow),),thebackoftheeye(thebackoftheeye(greengreen)andthefrontoftheeyeandandthefrontoftheeyeandbackofthenoseandmouthbackofthenoseandmouth( (magentamagenta).Thedimensions).Thedimensionsofthefacefromtoptoofthefacefromtoptobottomalsoexhibitthebotto

96、malsoexhibittheDivineProportion,intheDivineProportion,inthepositionsoftheeyebrowpositionsoftheeyebrow( (blueblue),nose(),nose(yellowyellow)and)andmouth(mouth(greengreenandandmagentamagenta).). TheearreflectstheshapeofTheearreflectstheshapeofaFibonaccispiral.aFibonaccispiral.Thefronttwoincisorteethfo

97、rmaThefronttwoincisorteethformagoldenrectangle,withaphiratiointhegoldenrectangle,withaphiratiointheheighthheighthtothewidth.tothewidth.TheratioofthewidthofthefirsttoothTheratioofthewidthofthefirsttoothtothesecondtoothfromthecenteristothesecondtoothfromthecenterisalsophi.alsophi.Theratioofthewidthoft

98、hesmiletotheTheratioofthewidthofthesmiletothethirdtoothfromthecenterisphiasthirdtoothfromthecenterisphiaswell.well.VisitthesiteofDr.EddyLevinformoreVisitthesiteofDr.EddyLevinformoreontheontheGoldenSectionandDentistryGoldenSectionandDentistry. .YourhandshowsPhiandtheFibonacciSeriesyourindexfinger.The

99、ratioofyourforearmtohandisPhiThe Human BodyThehumanbodyisbasedonPhiand5ThehumanbodyillustratestheGoldenSection.Wellusethesamebuildingblocksagain:TheProportionsintheBodyThewhitelineisthebodysheight.Theblueline,agoldensectionofthewhiteline,definesthedistancefromtheheadtothefingertipsTheyellowline,agol

100、densectionoftheblueline,definesthedistancefromtheheadtothenavelandtheelbows.Thegreenline,agoldensectionoftheyellowline,definesthedistancefromtheheadtothepectoralsandinsidetopofthearms,thewidthoftheshoulders,thelengthoftheforearmandtheshinbone.Themagentaline,agoldensectionofthegreenline,definesthedistancefromtheheadtothebaseoftheskullandthewidthoftheabdomen.Thesectionedportionsofthemagentalinedeterminethepositionofthenoseandthehairline.Althoughnotshown,thegoldensectionofthemagentaline(alsotheshortsectionofthegreenline)definesthewidthoftheheadandhalfthewidthofthechestandthehips.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号