《从算式到方程第课时一元一次方程》由会员分享,可在线阅读,更多相关《从算式到方程第课时一元一次方程(22页珍藏版)》请在金锄头文库上搜索。
1、3.1 3.1 从算式到方程(第从算式到方程(第1 1课时)课时) 3.1.1 3.1.1 一元一次方程一元一次方程义务教育教科书义务教育教科书 数学数学 七年级七年级 上册上册学习目标:学习目标: 1. 了解方程及一元一次方程的概念了解方程及一元一次方程的概念 2. 通过列方程的过程,感受方程作为刻画现实世界有效模型通过列方程的过程,感受方程作为刻画现实世界有效模型的意义,由算式到方程是数学的一大进步,从而体会数学的方的意义,由算式到方程是数学的一大进步,从而体会数学的方程模型思想程模型思想学习重点:学习重点:方程及一元一次方程概念,以及本节课内容所蕴涵方程及一元一次方程概念,以及本节课内容
2、所蕴涵的思想方法的思想方法学习难点:学习难点:思维习惯的转变思维习惯的转变本课时简要说明本课时简要说明 本课学习方程及一元一次方程的概念,根据问题中的数量关本课学习方程及一元一次方程的概念,根据问题中的数量关系系设未知数设未知数建立方程模型列方程打破了列算式时只建立方程模型列方程打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,方程是更方便、更有力的数学工具,从算术方法到代未知数,方程是更方便、更有力的数学工具,从算术方法到代数方法是数学的进步数方法是数学的进步.1. 创设情境创设情境 提出问题提出问题你会用算术
3、方法解决这个问题吗?你会用算术方法解决这个问题吗? 问题问题1:一辆客车和一辆卡车同时从:一辆客车和一辆卡车同时从A地出发沿同一地出发沿同一公路同方向行驶,客车的行驶速度是公路同方向行驶,客车的行驶速度是70 km/h,卡车,卡车的行驶速度是的行驶速度是60 km/h,客车比卡车早,客车比卡车早1 h经过经过B地地. A,B两地间的路程是多少?两地间的路程是多少?此题中涉及哪些量,这些量可以用什么关系表示?此题中涉及哪些量,这些量可以用什么关系表示? 问题问题1:一辆客车和一辆卡车同时从:一辆客车和一辆卡车同时从A地出发沿同一地出发沿同一公路同方向行驶,客车的行驶速度是公路同方向行驶,客车的行
4、驶速度是70 km/h,卡车,卡车的行驶速度是的行驶速度是60 km/h,客车比卡车早,客车比卡车早1 h经过经过B地地. A,B两地间的路程是多少?两地间的路程是多少?你认为引进什么样的未知量用方程表示这个问题?你认为引进什么样的未知量用方程表示这个问题?1. 创设情境创设情境 提出问题提出问题问题问题1:一辆客车和一辆卡车同时从:一辆客车和一辆卡车同时从A地出发沿同一公路地出发沿同一公路同方向行驶,客车的行驶速度是同方向行驶,客车的行驶速度是70 km/h,卡车的行驶,卡车的行驶速度是速度是60 km/h,客车比卡车早,客车比卡车早1 h经过经过B地地. A,B两地两地间的路程是多少?间的
5、路程是多少?1. 创设情境创设情境 提出问题提出问题问题问题1:一辆客车和一辆卡车同时从:一辆客车和一辆卡车同时从A地出发沿同一公路地出发沿同一公路同方向行驶,客车的行驶速度是同方向行驶,客车的行驶速度是70 km/h,卡车的行驶,卡车的行驶速度是速度是60 km/h,客车比卡车早,客车比卡车早1 h经过经过B地地. A,B两地两地间的路程是多少?间的路程是多少?AB 客车客车卡车卡车x 千米千米 解:设解:设A,B两地间的路程是两地间的路程是 x km, 客车从客车从A地到地到B地的行驶时间可以表示为:地的行驶时间可以表示为:卡车从卡车从A地到地到B地的行驶时间可以表示为:地的行驶时间可以表
6、示为:列方程的依据是什么?列方程的依据是什么?因为客车比卡车早因为客车比卡车早1 h经过经过B地,所以地,所以 比比 小小1, 即即 问题问题1:一辆客车和一辆卡车同时从:一辆客车和一辆卡车同时从A地出发沿同一地出发沿同一公路同方向行驶,客车的行驶速度是公路同方向行驶,客车的行驶速度是70 km/h,卡车,卡车的行驶速度是的行驶速度是60 km/h,客车比卡车早,客车比卡车早1 h经过经过B地地. A,B两地间的路程是多少?两地间的路程是多少? 问题问题2:对于上面的问题,你还能列出其他方程吗?:对于上面的问题,你还能列出其他方程吗?1. 创设情境创设情境 提出问题提出问题2. 比较方法比较方
7、法 明确意义明确意义问题问题3:比较算术方法和用方程解决这个问题各有什:比较算术方法和用方程解决这个问题各有什么特点?么特点? 用用算算术术方方法法解解题题时时,列列出出的的算算式式只只能能用用已已知知数数. 而而列列方方程程时时,方方程程中中既既含含有有已已知知数数,又又含含有有用用字字母母表表示示的的未未知知数数. 这这就就是是说说,在在方方程程中中未未知知数数(字字母母)可可以和已知数一起表示问题中的数量关系以和已知数一起表示问题中的数量关系. 3. 定义方程定义方程 感受过程感受过程问题问题4:你能归纳出方程定义吗?:你能归纳出方程定义吗? 列方程时,要先设字母表示未知数,然后根据问列
8、方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出题中的相等关系,写出含有未知数的等式含有未知数的等式方程方程你能举出方程的一个例子吗?你能举出方程的一个例子吗? 例例1 根据下列问题,设未知数并列出方程:根据下列问题,设未知数并列出方程: (1)用一根长)用一根长24 cm的铁丝围成一个正方形,正的铁丝围成一个正方形,正方形的边长是多少?方形的边长是多少? 解:设正方形的边长为解:设正方形的边长为x cm. 列方程列方程 . .4. 巩固方法巩固方法 定义新知定义新知例例1 根据下列问题,设未知数并列出方程:根据下列问题,设未知数并列出方程: (2)一一台台计计算算机机已已使使用用
9、1700 h,预预计计每每月月再再使使用用150 h,经经过过多多少少月月这这台台计计算算机机的的使使用用时时间间达达到到规规定定的检修时间的检修时间2450 h? 解:解: 设设x月后这台计算机的使用时间达到月后这台计算机的使用时间达到2450 h, 那么在那么在x月里这台计算机使用了月里这台计算机使用了150x h. 列方程列方程 . .4. 巩固方法巩固方法 定义新知定义新知例例1 根据下列问题,设未知数并列出方程:根据下列问题,设未知数并列出方程: (3)某校女生占全体学生数的)某校女生占全体学生数的52%,比男生多,比男生多80人,这个学校有多少学生?人,这个学校有多少学生? 解:设
10、这个学校的学生数为解:设这个学校的学生数为x,那么女生数为,那么女生数为0.52x, 男生数为男生数为( (10.52) )x. . 列方程列方程 . .4. 巩固方法巩固方法 定义新知定义新知问题问题5:观察上面例题列出的三个方程有什么特征?:观察上面例题列出的三个方程有什么特征?(1)只含有一个未知数)只含有一个未知数x,(2)未知数)未知数x的指数都是的指数都是1,(3)整式方程)整式方程 只含有一个未知数(元),未知数的次数都是只含有一个未知数(元),未知数的次数都是1, 这样的方程叫做一元一次方程这样的方程叫做一元一次方程4. 巩固方法巩固方法 定义新知定义新知练习:下列式子哪些是方
11、程,哪些是一元一次方程?练习:下列式子哪些是方程,哪些是一元一次方程?(1) ;(;(2) ; (3) ;(;(4) ;(5) ;(;(6) (2)()(3)()(4)()(5)是方程)是方程.4. 巩固方法巩固方法 定义新知定义新知(2)()(3)是一元一次方程)是一元一次方程.5. 归纳总结归纳总结 巩固发展巩固发展 请同学们带着下列问题阅读教科书:请同学们带着下列问题阅读教科书:(1)怎样将一个实际问题转化为方程问题?)怎样将一个实际问题转化为方程问题?(2)列方程的依据是什么?)列方程的依据是什么? 实际问题实际问题设未知数设未知数 列方程列方程一元一次方程一元一次方程 分析实际问题中
12、的数量关系,利用其中的相等关分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法系列出方程,是用数学解决实际问题的一种方法. 练习:根据下列问题,设未知数,列出方程,并指出练习:根据下列问题,设未知数,列出方程,并指出是不是一元一次方程:是不是一元一次方程: (1)环形跑道一周长)环形跑道一周长400 m,沿跑道跑多少周,可,沿跑道跑多少周,可以跑以跑3 000 m? (2)甲种铅笔每支)甲种铅笔每支0.3 元,乙种铅笔每支元,乙种铅笔每支0.6 元,用元,用9 元钱买了两种铅笔共元钱买了两种铅笔共20 支,两种铅笔各买了多少支?支,两种铅笔各买了多少支? (3
13、)一个梯形的下底比上底多)一个梯形的下底比上底多2 cm,高是,高是5 cm,面,面积是积是40 cm2,求上底,求上底 (4)用买)用买10 个大水杯的钱,可以买个大水杯的钱,可以买15 个小水杯,大个小水杯,大水杯比小水杯的单价多水杯比小水杯的单价多5 元,两种水杯的单价各是多少元,两种水杯的单价各是多少元?元?5. 归纳总结归纳总结 巩固发展巩固发展 练习:根据下列问题,设未知数,列出方程,并指出练习:根据下列问题,设未知数,列出方程,并指出是不是一元一次方程:是不是一元一次方程: (1)环形跑道一周长)环形跑道一周长400m,沿跑道跑多少周,可以,沿跑道跑多少周,可以跑跑3 000 m
14、? (2)甲种铅笔每支)甲种铅笔每支0.3 元,乙种铅笔每支元,乙种铅笔每支0.6 元,用元,用9 元钱买了两种铅笔共元钱买了两种铅笔共20 支,两种铅笔各买了多少支?支,两种铅笔各买了多少支? 解:解:(1)设沿跑道跑)设沿跑道跑x周,周,(2)设甲种铅笔买了)设甲种铅笔买了x支,乙种铅笔买了支,乙种铅笔买了( (20-x) )支,支,5. 归纳总结归纳总结 巩固发展巩固发展是一元一次方程是一元一次方程是一元一次方程是一元一次方程 练习:根据下列问题,设未知数,列出方程,并指出是练习:根据下列问题,设未知数,列出方程,并指出是不是一元一次方程:不是一元一次方程: (3)一个梯形的下底比上底多
15、)一个梯形的下底比上底多2 cm,高是,高是5 cm,面积,面积是是40 cm2,求上底,求上底 (4)用买)用买10个大水杯的钱,可以买个大水杯的钱,可以买15个小水杯,大水个小水杯,大水杯比小水杯的单价多杯比小水杯的单价多5元,两种水杯的单价各是多少元?元,两种水杯的单价各是多少元?解:解:(3)设上底为)设上底为x cm, . (4)设小水杯的单价是)设小水杯的单价是x 元,大水杯的单价是元,大水杯的单价是( (x+5) ) 元,元, . 5. 归纳总结归纳总结 巩固发展巩固发展是一元一次方程是一元一次方程是一元一次方程是一元一次方程6. 课堂小结课堂小结 布置作业布置作业(1)本节课学
16、习了哪些主要内容?)本节课学习了哪些主要内容?(2)一元一次方程的三个特征各指什么?)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?)从实际问题中列出方程的关键是什么?作业:教科书第作业:教科书第84页第页第1、5、6题题1.下列各式中,是方程的是(下列各式中,是方程的是( ). ; ; ; ; (A) (B) (C) (D)2.下列各式中,是一元一次方程的是(下列各式中,是一元一次方程的是( ). (A) (B) (C) (D) 目标检测目标检测 3.根据条件根据条件“x的的 比它的比它的 小小5”的数量关系列出的数量关系列出 方程为方程为_.4.(设设未未知知数数列列方方程程)某某校校组组织织活活动动,共共有有100人人 参参加加,要要把把参参加加活活动动的的人人分分成成两两组组,已已知知第第一一组组 的的人人数数比比第第二二组组的的人人数数的的2倍倍少少8人人,问问这这两两组组各各 有多少人?有多少人?5.已知方程已知方程 是关于是关于x的一元一次方程,的一元一次方程, 请求出请求出a的值的值目标检测目标检测