最新北京大学环境生态学课件第三章种群生态精品课件

上传人:桔**** 文档编号:570268893 上传时间:2024-08-03 格式:PPT 页数:56 大小:591KB
返回 下载 相关 举报
最新北京大学环境生态学课件第三章种群生态精品课件_第1页
第1页 / 共56页
最新北京大学环境生态学课件第三章种群生态精品课件_第2页
第2页 / 共56页
最新北京大学环境生态学课件第三章种群生态精品课件_第3页
第3页 / 共56页
最新北京大学环境生态学课件第三章种群生态精品课件_第4页
第4页 / 共56页
最新北京大学环境生态学课件第三章种群生态精品课件_第5页
第5页 / 共56页
点击查看更多>>
资源描述

《最新北京大学环境生态学课件第三章种群生态精品课件》由会员分享,可在线阅读,更多相关《最新北京大学环境生态学课件第三章种群生态精品课件(56页珍藏版)》请在金锄头文库上搜索。

1、进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。记忆中的故那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。记忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着一把,忽闪忽闪个不停,嘴里叨叨着“怎么这么热怎么这么热”,于是三五成群,聚在大树,于是三五成群,聚在大树下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩

2、子们却在周下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到围跑跑跳跳,热得满头大汗,不时听到“强子,别跑了,快来我给你扇扇强子,别跑了,快来我给你扇扇”。孩。孩子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时母亲总是,好似生气的样子,边扇边训,母亲总是,好似生气的样子,边扇边训,“你看热的,跑什么?你看热的,跑什么?”此时这把蒲扇,此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲的味道!蒲扇是中国传统工艺品,在是那么凉快,那么的温馨幸福,有母亲的味

3、道!蒲扇是中国传统工艺品,在我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲扇。蒲扇流传至今,我的记忆中,它跨越了半个世纪,圆,轻巧又便宜的蒲扇。蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过了我们的半个人

4、生的轨迹,携带着特有的念想,一年年,一天天,流向长也走过了我们的半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧道,袅长的时间隧道,袅北京大学环境生态学课件第三章种群生态第一节 种群的基本概念三、种群是构成物种的基本单位,也是构成群落的基本单位(组成成分)四、种群的类型(按研究对象分) 自然种群 实验种群 单种种群 混种种群第二节 种群的基本特征4.种群分布型的计算频次分布法: 根据分布型的理论概率分布通式计算出理论概率和理论频次; 用x2检验法分别检验理论频次和实测频次的吻合度,来判断属何种分布型.分布型指数法 a:空间分布指数(扩散系数) I=s2/m 当I=1,随机分布

5、;I1,集群分布.第二节 种群的基本特征b: k值法 (可不受虫口密度变化而改变) k=m2/(s2-m) 1/k =0,随机分布; 1/k 0,集群分布; 1/k 0,均匀分布.C:聚块指标 m*/m m*:平均拥挤度。 m*/m=(xi2/ xi)-1/m第二节 种群的基本特征C:聚块指标 m*/m m*:平均拥挤度。 m*/m=(xi2/ xi)-1/m m*/m=1, 随机分布 m*/m1, 集群分布第二节 种群的基本特征d:平均拥挤度m*与平均密度m的回归关系: m* =+m =0, =1, 随机分布 0, =1 =0, 1, 集群分布 0, 1第二节 种群的基本特征三、种群的出生率

6、和死亡率1.出生率 生理出生率(最大出生率):在理想条件下所能达到的最大出生数量. 生态出生率(实际出生率):在一定时期内,种群在特定条件下实际出生数量.内外因素共同作用影响的结果. 影响出生率的因素: a.性成熟速度; b.每次产仔数; c.每年生殖次数; d.生殖年龄的长短.第二节 种群的基本特征2.死亡率 生理死亡率(最小死亡率):在最适条件下个体因衰老而死亡,其种群死亡率降到最低. 生态死亡率(实际死亡率):在一定条件下的实际死亡率.许多个体死于各种生物或非生物影响的因素. 出生率和死亡率一般都以种群中每单位时间每1000个个体的出生或死亡数来表示. 第二节 种群的基本特征四、种群的年

7、龄结构 种群的年龄分为三种生态年龄,即3个年龄组: 生殖前期、生殖期、生殖后期 3种主要的年龄结构类型: 增长型、稳定型、衰老型第二节 种群的基本特征五、性比 大多数生物的自然种群内个体比率常为1:1 出生时雄性多于雌性,随年龄增长,雌性多于雄性. 性比也受环境因素影响,如食物的丰歉. 如赤眼蜂,当食物短缺时,雌性比例下降. 第二节 种群的基本特征六、多型现象 种群内的个体在形态、生殖力、体重及其他生理生态习性上产生差异,而出现种群内不同生物型. 这种不同不单表现在相异,同性个体也有不同. 如飞虱长短翅; 社会性昆虫等第三节 种群的增长 目的和内容:认识种群数量上的动态,用数学模型加以描述,进

8、而分析其数量变动规律,预测未来数量动态趋势. 按时间函数的连续或不连续,可分两类.种群的几何级数增长(世代离散性生长模型) 适应: 一年一个世代,一个世代只生殖一次 R0=Nt+1/Nt Nt: 种群在t时刻的数量; Nt+1: 种群在t+1时刻的数量; R0: 每个世代的净生殖率(繁殖速率)一 种群的几何级数增长(世代离散性生长模型)一、R0恒定 由 Nt+1 = R0Nt 可得 Nt=R0tN0 (R01,增长;R0=1,不增不减;R0k,种群下降; N=k,种群不增不减;Nk种群上升求其积分:Nt=k/1+(k/N0-1)e-rt三 种群的逻辑斯谛增长(在有限环境中)应具备:第一:具有稳

9、定的年龄分布.第二:对种群密度测定有恰好的单位.第三:每个体增长率与种群大小成线性关系.第四:种群密度对增长率的影响是瞬时作用,不存在时滞效应.四 对种群增长模型的修正一、 离散型有时滞的模型 Nt+1 = R0Nt=(1-BZt-1)Nt 即用t-1(上一代)的Z值, 不用当代Z值二、逻辑斯谛生长的时滞模型 dN/dt=rNt-g(k-Nt-w)/k g为生殖时滞; w为反应时滞(作用时间时滞)第四节 种群生命表及分析 生命表方法是种群生态学研究的一个重要内容. 生命表方法是研究种群数量变动机制和制定数量预测模型的一种重要方法 一、生命表的定义 生命表是按种群生长的时间,或按种群的年龄(发育

10、阶段)的程序编制的,系统记述了种群的死亡或生存率和生殖率. 是最清楚、最直接地展示种群死亡和存活过程的一览表. 最初用于人寿保险. 对研究人口现象和人口的生命过程有重要的意义.二、生命表的主要优点1. 系统性: 记录了从世代开始至结束.2. 阶段性: 记录各阶段的生存或生殖情况.3. 综合性: 记录了影响种群数量消长的各因素的作用状况.4. 关键性: 分析其关键因素,找出主要因素和作用的主要阶段.生命表的一般构成 了解生命表中常见的参数和符号 x: 按年龄或一定时间划分的单位期限.(如:日、周、月等) nx: x期开始时的存活率 dx: x期限内(xx+1)的死亡数 qx: x期限内的死亡率,

11、常以100 qx 和1000 qx表示 qx= dx/ nx lx: x期开始时存活个体的百分数. lx = nx/n1生命表的一般构成Lx: xx+1期间的平均存活数目 (nx+nx+1)/2Tx: x期限后平均存活数的累计数 Tx=Lxex: x期开始时的平均生命期望值 ex=Tx/nx nx dx是直接观察值,其余参数为统计值生命表建立的一般步骤一、设计、调查: 根据研究对象的生活史、分布及各类环境因子特点,确定调查取样方案.二、根据研究对象、目的确定生命表类型: 如: 特定时间生命表(适合实验种群的研究) 特定年龄生命表(适合自然种群的研究、记录各发育阶段dx的死亡原因,死亡原因一栏用

12、dxf表示) 生命表建立的一般步骤三、合理划分时间间隔 在了解其生物学的基础上,合理划分时间间隔,可采用年、月、日或小时等. 但野外(如对自然种群)要得到有关生物年龄资料较困难. 可通过鉴定它们死亡时的年龄,对dx作出估计.四、制表、生命表数据分析特定时间生命表 又称静态生命表.生命表中常见的形式.适用:于世代重叠的生物,在人口调查中也常用优点: 容易使我们看出种群的生存、生殖对策; 可计算内禀增长率rm和周限增长率 编制较易.缺点: 无法分析死亡原因或关键因素 也不适用于出生或死亡变动很大的种群.特定时间生命表一、 例: 一个假定的特定时间生命表 x nx dx Lx Tx ex 1000q

13、x1 1000 300 850 2180 2.18 3002 700 200 600 1330 1.90 2863 500 200 400 730 1.46 4004 300 200 200 330 1.10 6675 100 50 75 130 1.30 5006 50 30 35 55 1.10 6007 20 10 15 20 1.00 500 8 10 10 5 5 0.50 100 特定时间生命表 在特定时间生命表中,常加入年龄特征繁殖力项mx, mx表示在x期限内存活的平均每一个雌性个体所产生的雌性后代数(即每雌产雌数) mx=oxsx/(nx+nx+1)/2 ox:x期的产卵数

14、sx:性比 (nx+nx+1)/2: x期的存活数目特定时间生命表例 金龟子实验种群生命表 X lx mx lxmx lxmxx 0 1.00 49 0.46 未成熟期 50 0.45 51 0.42 1.0 0.42 21.42 52 0.31 6.9 2.13 110.76 53 0.05 7.5 0.38 20.14 54 0.01 0.9 0.01 0.54 16.3 2.94 152.86特定时间生命表二、生命参数的计算 世代平均历期(周期): T=lxmxx/lxmx 净增殖率:每过一个世代种群数量增长倍数 R0= lxmx 周限增长率: =erm 特定时间生命表 内禀增长率rm:

15、在实验条件下,人为地排除不利的环境条件,排除捕食者和疾病的影响,并提供理想的和充足的食物,这种条件下所观察到的种群增长能力. 最佳温湿组合,充足高质量食物,无限空间,最佳种群密度,排除其它生物的有害影响. 满足:e-rmxlxmx=1 特定年龄生命表 又称动态生命表 适用于世代不重叠生物,可进行关键因子分析 另外还有图解式生命表, 植物生命表等. 植物生命表: 其存活可用种子的萌发百分数和实生苗的存活百分数来表示.第五节 种群间的相互关系种群相互关系的类型 关系类型 关系特点 竞争(- -) 彼此互相抑制 捕食(+ -) 种群A杀死或吃掉种群B一些个体 寄生寄生(+ -) 种群A寄生于种群B,

16、并有害于后者 中性中性(0 0) 彼此互不影响 共生共生(+ +) 彼此互相有利,专性 互惠互惠(+ +) 彼此互相有利,兼性 偏利偏利(+ 0) 对A种群有利,对种群B无利害 偏害偏害(- 0) 对A种群有害,对种群B无利害竞争 竞争: 生活在同一地区的两个物种,由于利用相同的资源,导致每一个物种的数量下降,即两种群彼此发生有害影响. 竞争一般可分为干扰竞争和利用竞争. 干扰竞争:一种动物借助于行为排斥另一种动物使其得不到资源. 如:红翅鸫和黄头鸫. 利用竞争:一个物种所利用的资源对第二个物种也非常重要,但两个物种并不发生直接接触.如:蚂蚁、啮齿动物都以植物种子为食.竞争一、种群竞争的理论模

17、型 竞争方程建立在逻辑斯谛方程的基础上. dN1/dt=r1N1(k1-N1- 12N2)/k1 dN2/dt=r2N2(k2-N2- 21N1)/k2 k1、k2:两竞争物种的环境负荷 12: 物种2的竞争系数,2对1的竞争抑制作用; 21: 物种1的竞争系数,1对2的竞争抑制作用. 当没有竞争情况下, 12或N2等于0, 21或N1等于0;即呈S曲线.竞争二、竞争排除 两个种群开始竞争时,一个种群最终将另一个种群完全排除掉,并使整个系统趋向饱和. 结论: 两个生态学上完全相同的物种不可能同时同地生活在一起;不同物种要实现在饱和环境和竞争群落中的共存,必须具有某些生态学的差异.竞争三、实验条

18、件下的种群竞争 两个例子: 大草履虫和双小核草履虫 两种谷盗竞争, 拟谷盗和锯谷盗竞争四、在自然条件下的种群竞争 (1) 对生活在同一地区的近缘物种生态学研究: 近缘物种在形态生理生态方面相似,因生活在同一地区,竞争激烈,迫使其在生态学上发生分化,表现在3方面: 第一: 利用不同的生境或微生境 第二: 吃不同的食物 第三: 在不同的时间出来活动 (2) 特征替代现象: 同地分布的近缘种之间的差竞争 异往往比异地分布时所表现的差异大. 因同地分布时,彼此由于竞争而发生分化,而异地分布时,由于无竞争而分化不明显.(3)对所谓“不完全”动植物区系及生态位相应变化 如:海岛即属于这种区系 在海岛上缺少

19、大陆上许多物种,侵入海岛的物种扩展其生态位,利用一些新生境资源,因此其数量比大陆多,生境也更广,觅食技巧更多样.捕食 一个物种的成员以另一物种成员为食,被捕食者常常被杀死. 狭义捕食: 动物吃动物 广义捕食: 肉食、植食、拟寄生、同种相残 捕食作为一个重要生态学现象的理由: a.限制种群的分布,抑制种群的数量. b.捕食同竞争一样,是影响群落结构的主要生态过程. c.捕食是一个主要的选择压力,生物的很多适应可用捕食者和猎物间的协同进化来说明.捕食一、捕食过程的数学模型 P:代表捕食者的种群数量, R:代表资源种群数量1.资源种群的增长率资源种群的增长率 无捕食者,呈指数增长: dR/dt=rR

20、 有捕食者: dR/dt=(r-aP)R (a:捕食者个体攻击的成功率)2.捕食者种群增长率捕食者种群增长率 无资源种群,呈指数下降: dP/dt=-dP(d:捕食者死亡率) 有资源种群, dP/dt=(-d+bR)P (b:捕食者将资源种群转化为新生捕食者的个体转化率)捕食二、捕食者的功能反应 功能反应功能反应: 捕食者与猎物种群相互关系模型揭示出捕食者对猎物密度的变化可作出不同类型反应.随着猎物密度的增加,每个捕食者可捕获更多猎物或可较快地捕获猎物,此现象称捕食者的功能反应. Holling(1959)圆盘方程: Na=aTN/(1+aThN) Na:每个捕食者所攻击的猎物数量 a: 常数

21、,捕食者的攻击率 N:猎物数量 Th:处理时间 T:总时间协同进化一、概念 一个物种的进化必然会改变作用于其它生物的选择压力,引起其它生物也发生变化,这些变化反过来引起相关物种的进一步变化. 捕食者和猎物之间的相互作用是最好的实例二、昆虫与植物间的关系 相似于捕食者与猎物之间的相互作用三、大型食草动物与植物的协同进化协同进化四、互惠共生物种间的协同进化 对双方都有好处,当离开时双方都能生存. 如: 绿水螅体内的绿藻虫 蚜虫分泌蜜露(消耗植物能量)和寄主植物(为固氮菌提供能量) 蚜虫与蚂蚁 协同进化五、协同适应系统 协同进化不仅存在于一对物种间,也存在于同一群落的所有成员之间. 个体或亲缘个体-相关物种的巨大选择压力-生态系统的进化.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号