第六章位置检测装置

上传人:hs****ma 文档编号:568717625 上传时间:2024-07-26 格式:PPT 页数:46 大小:6.27MB
返回 下载 相关 举报
第六章位置检测装置_第1页
第1页 / 共46页
第六章位置检测装置_第2页
第2页 / 共46页
第六章位置检测装置_第3页
第3页 / 共46页
第六章位置检测装置_第4页
第4页 / 共46页
第六章位置检测装置_第5页
第5页 / 共46页
点击查看更多>>
资源描述

《第六章位置检测装置》由会员分享,可在线阅读,更多相关《第六章位置检测装置(46页珍藏版)》请在金锄头文库上搜索。

1、第六章第六章 位置检测装置位置检测装置返回课件首页位置检测装置是数控机床的重要组成部分。在闭环、半闭环控制系统中,它的主要作用是检测位移和速度,并发出反馈信号,构成闭环或半闭环控制。数控机床对位置检测装置的要求如下:(1)工作可靠,抗干扰能力强;(2)满足精度和速度的要求;(3)易于安装,维护方便,适应机床工作环境;(4)成本低。位置检测装置在数控机床中的位置主轴伺服单元数 控装置输出设备PLC进给伺服单元主轴电机进给电机位置检测机床本体接口电路操作面板输入设备(一)直接测量和间接测量1.直接测量直接测量是将直线型检测装置安装在移动部件上,用来直接测量工作台的直线位移,作为全闭环伺服系统的位置

2、反馈信号,而构成位置闭环控制。其优点是准确性高、可靠性好,缺点是测量装置要和工作台行程等长,所以在大型数控机床上受到一定限制。2.间接测量它是将旋转型检测装置安装在驱动电机轴或滚珠丝杠上,通过检测转动件的角位移来间接测量机床工作台的直线位移,作为半闭环伺服系统的位置反馈作用。优点是测量方便、无长度限制。缺点是测量信号中增加了由回转运动转变为直线运动的传动链误差,从而影响了测量精度。位置检测装置按工作条件和测量要求不同,有下面几种分类方法:(二)数字式测量和模拟式测量1. 数字式测量 它是将被测量以数字形式来表示,测量信号一般为脉冲,可以直接把它送到数控装置进行比较、处理。信号抗干扰能力强、处理

3、简单。2. 模拟量测量 它是将被测量用连续变量来表示,如电压变化、相位变化等。它对信号处理的方法相对来说比较复杂。( 三 ) 增 量 式 测 量 和 绝 对 式 测 量1.增量式测量在轮廓控制数控机床上多采用这种测量方式,增量式测量只 测 相 对 位 移 量 , 如 测 量 单 位 为 0.001mm, 则 每 移 动0.001mm就发出一个脉冲信号,其优点是测量装置较简单,任何一个点都可以作为测量的起点,而移距是由测量信号计数累加所得,但一旦计数有误,以后测量所得结果完全错误。2.绝对式测量绝对式测量装置对于被测量的任意一点位置均由固定的零点标起,每一个被测点都有一个相应的测量值。测量装置的

4、结构较增量式复杂,如编码盘中,对应于码盘的每一个角度位置便有一组二进制位数。显然,分辨精度要求愈高,量程愈大,则所要求的二进制位数也愈多,结构就愈复杂。第一节第一节 旋转变压器旋转变压器 一、结构与工作原理一、结构与工作原理 旋转变压器是输出电压信号与转子转角成一定函数关系的控制微电机, 旋转变压器是一种角位移测量装置,由定子和转子组成。旋转变压器的工作原理与普通变压器基本相似,其中定子绕组作为变压器的一次侧,接受励磁电压。转子绕组作为变压器的二次侧,通过电磁耦合得到感应电压,其输出电压大小与转子位置有关。旋转变压器通过测量电动机或被测轴的转角来间接测量工作台的位移。旋转变压器分为单极和多极形

5、式,先分析一下单极工作情况。234如图所示,单极型旋转变压器的定子和转子各有一对磁极,假设加到定子绕组的励磁电压为V1,则转子通过电磁耦合,产生感应电压V2。 旋转变压器工作原理式中K变压比(即绕组匝数比);Vm励磁信号的幅值;励磁信号角频率;旋转变压器转角。当转子转到使它的磁轴和定子绕组磁轴垂直时转子绕组感应电压;当转子绕组的磁轴自垂直位置转过一定角度时,转子绕组中产生的感应电压为当转子转到00,两磁轴平行,此时转子绕组中感应电压最大,即当转子转过900,两磁轴垂直时,转子绕组中感应电压最小,即 实际使用时通常采用多极形式,如正余弦旋转变压器,其定子和转子均由两个匝数相等,轴线相互垂直的绕组

6、构成,转子输出电压则为如图所示。一个转子绕组接高阻抗作为补偿,另一个转子绕组作为输出,应用叠加原理,其磁通为Vs定子Vc转子正余弦旋转变压器工作原理 这两个励磁电压在转子绕组中都产生了感应电压,如图所示,根据线性叠加原理,转子中的感应电压应为这两个电压的代数和:二、应用二、应用 旋转变压器作为位置检测装置,有两种典型工作方式,鉴相式和鉴幅式。鉴相式是根据感应输出电压的相位来检测位移量;鉴幅式是根据感应输出电压的幅值来检测位移量。 1 . 鉴相工作方式 给定子两绕组分别通以幅值相同、频率相同、相位差900的交流励磁电压,即cscccosssins 这两个励磁电压在转子绕组中都产生了感应电压,如图

7、所示,根据线性叠加原理,转子中的感应电压应为这两个电压的代数和:转子输出电压的相位角和转子的偏转角之间有严格的对应关系,这样,只要检测出转子输出电压的相位角,就可知道转子的转角。由于旋转变压器的转子和被测轴连接在一起,所以,被测轴的角位移就知道了。假如,转子逆向转动,可得2. 鉴幅工作方式 给定子的两个绕组分别通以频率相同、相位相同、幅值分别按正弦和余弦变化的交流激磁电压,即式中 激磁绕组中的电气角。 Vmsin,Vmcos为定子两绕组激磁信号的幅值则转子上的叠加电压为同理,如果转子逆向转动,可得转子感应电压的幅值随转子的偏转角而变化,测量出幅值即可求得转角。 如果将旋转变压器装在数控机床的滚

8、珠丝杠上,当角从00到3600时,丝杠上的螺母带动工作台移动了一个导程,间接测量了执行部件的直线位移。测量所走过的行程时,可加一个计数器,累计所转的转数,折算成位移总长度。第二节第二节 感应同步器感应同步器 一、结构与工作原理一、结构与工作原理感应同步器和旋转变压器均为电磁式检测装置,属模拟式测量,二者工作原理相同,其输出电压随被测直线位移或角位移而改变。感应同步器按其结构特点一般分为直线式和旋转式两种:直线式感应同步器由定尺和滑尺组成,用于直线位移测量。旋转式感应同步器由转子和定子组成,用于角位移测量。以直线式感应同步器为例,介绍其结构和工作原理。 直线感应同步器相当于一个展开的多极旋转变压

9、器,其结构如图所示,定尺和滑尺的基板采用与机床热膨胀系数相近的钢板制成,钢板上用绝缘粘结剂贴有铜箔,并利用腐蚀的办法做成图示的印刷绕组。长尺叫定尺,安装在机床床身上,短尺为滑尺,安装于移动部件上,两者平行放置,保持0.250.05mm间隙。V2定尺滑尺余弦绕组正弦绕组VsVc直线感应同步器结构 感应同步器两个单元绕组之间的距离为节距,滑尺和定尺的节距均为2,这是衡量感应同步器精度的主要参数。标准感应同步器定尺长250mm,滑尺长100mm,节距为2mm。定尺上是单向、均匀、连续的感应绕组,滑尺有两组绕组,一组为正弦绕组,另一为余弦绕组。当正弦绕组与定尺绕组对齐时,余弦绕组与定尺绕组相差1/4节

10、距。V2定尺滑尺余弦绕组正弦绕组VsVc 当滑尺任意一绕组加交流励磁电压时,由于电磁感应作用,在定尺绕组中必然产生感应电压,该感应电压取决于滑尺和定尺的相对位置。当只给滑尺上正弦绕组加励磁电压时,定尺感应电压与定、滑尺的相对位置关系如图所示。定尺滑A尺Bt241位Ct221置Dt243Et2EAV2MN正弦绕组加励磁电压余弦绕组加励磁电压鑮BDCOP定尺滑A尺Bt241位Ct221置Dt243Et2 如果滑尺处于A位置,即滑尺绕组与定尺绕组完全对应重合,定尺绕组线圈中穿入的磁通最多,则定尺上的感应电压最大。随着滑尺相对定尺做平行移动,穿入定尺的磁通逐渐减少,感应电压逐渐减小。当滑尺移到图中B点

11、位置,与定尺绕组刚好错开1/4节距时,感应电压为零。再移动至1/2节距处,即图中C点位置时,定尺线圈中穿出的磁通最多,感应电压最大,但极性相反。再移至3/4节距,即图中D点位置时,感应电压又变为零,当移动一个节距位置如图中E点,又恢复到初始状态,与A点相同。显然,在定尺移动一个节距的过程中,感应电压近似于余弦函数变化了一个周期。若设定尺绕组节距为2,它对应的感应电压以余弦函数变化了2,当滑尺移动距离为x时,则对应感应电压以余弦函数变化相位角。由比例关系可得设加在滑尺上一相绕组的励磁电压:则定尺绕组感应电压为式中K耦合系数;Vm激磁电压的幅值;激磁电压的角频率;与位移对应的角度。Vmcos为感应

12、电压的幅值 感应电压的幅值变化规律就是一个周期性的余弦曲线。在一个周期内,感应电压的某一幅值对应两个位移点,如下图中M、N两点。为确定唯一位移,在滑尺上与正弦绕组错开1/4节距处,配置了余弦绕组。同样,若在滑尺的余弦绕组中通以交流励磁电压,也能得出定尺绕组感应电压与两尺相对位移的关系曲线,它们之间为正弦函数关系。若滑尺上的正、余弦绕组同时励磁,就可以分辨出感应电压值所对应的唯一确定的位移。 EAV2MN正弦绕组余弦绕组BDCOP第三节 脉冲编码器脉冲编码器是一种旋转式脉冲发生器,能把机械转角变成电脉冲,是数控机床上使用很广泛的位置检测装置。脉冲编码器可分为增量式与绝对式两类。从产生元件上分,脉

13、冲编码器有光电式、接触式、电磁感应式三种,从精度和可靠性来看,光电式较好,数控机床上主要使用的是光电式脉冲编码器。型号用脉冲数/转(p/r)表示,常用的2000,2500,3000p/r,现在有10万p/r以上的产品。它可以用于角度检测,也可用于速度检测。通常它与电机做成一体,或安装在非轴伸端。a)b)一、绝对式编码器一、绝对式编码器绝对式编码器的工作原理码道:测量电路:扇区:分辨率:由图可以看出,码道的圈数就是二进制的位数,且高位在内,低位在外。其分辨角360o/24=22.5o,若是n位二进制码盘,就有n圈码道,分辨角360o/2n,码盘位数越大,所能分辨的角度越小,测量精度越高。若要提高

14、分辨力,就必须增多码道,即二进制位数增多。目前接触式码盘一般可以做到9位二进制,光电式码盘可以做到18位二进制。四位二进制码盘非单值性误差 自然码盘的缺点及格莱码盘用二进制代码做的码盘,如果电刷安装不准,会使得个别电刷错位,而出现很大的数值误差。为消除这种误差,可采用葛莱码盘。 图为葛莱码盘,其各码道的数码不同时改变两个以上,任何两个相邻数码间只有一位是变化的,每次只切换一位数,把误差控制在最小范围内。二进制码转换成葛莱码的法则是:将二进制码右移一位并舍去末位的数码,再与二进制数码作不进位加法,结果即为葛莱码。 葛莱码盘 例如,二进制码1101对应的葛莱码为1011,其演算过程如下: 1101

15、 (二进制码) 1101(不进位相加,舍去末位) 1011 (葛莱码)二、增量式脉冲编码器二、增量式脉冲编码器光电式脉冲编码器通常与电机做在一起,或者安装在电机非轴伸端,电动机可直接与滚珠丝杠相连,或通过减速比为i的减速齿轮,然后与滚珠丝杠相连,那么每个脉冲对应机床工作台移动的距离可用下式计算:式中脉冲当量(mm/脉冲);S滚珠丝杠的导程(mm);i减速齿轮的减速比;M脉冲编码器每转的脉冲数(p/r)。i1个脉冲()-mmM个脉冲(360,1转)M/i个脉冲(1/i转)-S1/imm推导: 光电盘是用玻璃材料研磨抛光制成,玻璃表面在真空中镀上一层不透光的铬,然后用照相腐蚀法在上面制成向心透光窄

16、缝。透光窄缝在圆周上等分,其数量从几百条到几千条不等。圆盘也用玻璃材料研磨抛光制成,其透光窄缝为两条,每一条后面安装有一只光电元件。光电盘与工作轴连在一起 ,光电盘转动时,每转过一个缝隙就发生一次光线的明暗变化,光电元件把通过光电盘和圆盘射来的忽明忽暗的光信号转换为近似正弦波的电信号,经过整形、放大、和微分处理后,输出脉冲信号。通过记录脉冲的数目,就可以测出转角。测出脉冲的变化率,即单位时间脉冲的数目,就可以求出速度。 光电式脉冲编码器,它由光源、聚光镜、光电盘、圆盘、光电元件和信号处理电路等组成(如图)。电流AB节距tA1B1900 脉冲编码器输出波形为了判断旋转方向,圆盘的两个窄缝距离彼此

17、错开1/4节距,使两个光电元件输出信号相位差900。如图5-15所示,A、B信号为具有900相位差的正弦波,经放大和整形变为方波A1、B1。设A相比B相超前时为正方向旋转,则B相超前A相就是负方向旋转,利用A相与B相的相位关系可以判别旋转方向。此外,在光电盘的里圈不透光圆环上还刻有一条透光条纹,用以产生每转一个的零位脉冲信号,它是轴旋转一周在固定位置上产生一个脉冲。脉冲编码器应用http:/ 光栅光栅一、结构一、结构光栅种类较多。根据光线在光栅中是透射还是反射分为透射光栅和反射光栅,透射光栅分辨率较反射光栅高,其检测精度可达1m以上。从形状上看,又可分为圆光栅和直线光栅。圆光栅用于测量转角位移

18、,直线光栅用于检测直线位移。两者工作原理基本相似,本节着重介绍一种应用比较广泛的透射式直线光栅。直线光栅通常包括一长和一短两块配套使用,其中长的称为标尺光栅或长光栅,一般固定在机床移动部件上,要求与行程等长。短的为指示光栅或短光栅,装在机床固定部件上。两光栅尺是刻有均匀密集线纹的透明玻璃片,线纹密度为25、50、100、250条/mm等。线纹之间距离相等,该间距称为栅距,测量时它们相互平行放置,并保持0.050.1mm的间隙。38工作原理工作原理二、工作原理二、工作原理当指示光栅上的线纹与标尺光栅上的线纹成一小角度放置时,两光栅尺上线纹互相交叉。在光源的照射下,交叉点附近的小区域内黑线重叠,形

19、成黑色条纹,其它部分为明亮条纹,这种明暗相间的条纹称为莫尔条纹。莫尔条纹与光栅线纹几乎成垂直方向排列。严格地说,是与两片光栅线纹夹角的平分线相垂直。莫尔条纹具有如下特点:1.放大作用用W(mm)表示莫尔条纹的宽度,P(mm)表示栅距,(rad)为光栅线纹之间的夹角,如图所示则有莫尔条纹宽度W与角成反比, 越小,放大倍数越大。2.均化误差作用莫尔条纹是由光栅的大量刻线共同组成,例如,200条/mm的光栅,10mm宽的光栅就由2000条线纹组成,这样栅距之间的固有相邻误差就被平均化了,消除了栅距之间不均匀造成的误差。标尺光栅W指示光栅(斜)P3.莫尔条纹的移动与栅距的移动成比例当光栅尺移动一个栅距

20、P时,莫尔条纹也刚好移动了一个条纹宽度W。只要通过光电元件测出莫尔条纹的数目,就可知道光栅移动了多少个栅距,工作台移动的距离可以计算出来。若光栅移动方向相反,则莫尔条纹移动方向也相反。标尺光栅W指示光栅(斜)P标尺方向指示尺转角方向莫尔条纹方向标尺方向指示尺转角方向莫尔条纹方向图5-19光栅测量系统 光栅测量系统如图所示,由光源、聚光镜、光栅尺、光电元件和驱动线路组成。读数头光源采用普通的灯泡,发出辐射光线,经过聚光镜后变为平行光束,照射光栅尺。光电元件(常使用硅光电池)接受透过光栅尺光强信号,并将其转换成相应的电压信号。由于此信号比较微弱,在长距离传递时,很容易被各种干扰信号淹没,造成传递失

21、真,驱动线路的作用就是将电压信号进行电压和功率放大。 除标尺光栅与工作台一起移动外,光源、聚光镜、指示光栅、光电元件和驱动线路均装在一个壳体内,作成一个单独部件固定在机床上,这个部件称为光栅读数头,又叫光电转换器,其作用把光栅莫尔条纹的光信号变成电信号。三、应用(光栅位移数字转换系统)三、应用(光栅位移数字转换系统)当光栅移动一个栅距,莫尔条纹便移动一个条纹宽度,理论上光栅亮度变化是一个三角波形,但由于漏光和不能达到最大亮度,被削顶削底后而近似一个正弦波。硅光电池将近似正弦波的光强信号变为同频率的电压信号,经光栅位移数字变换电路放大、整形、微分输出脉冲。每产生一个脉冲,就代表移动了一个栅距那么

22、大的位移,通过对脉冲计数便可得到工作台的移动距离。光栅位移O图5-20光栅的实际亮度变化光栅位移电压O图5-21光栅的输出波形图亮度 采用一个光电元件即只开一个窗口观察,只能计数,却无法判断移动方向。因为无论莫尔条纹上移或下移,从一固定位置看其明暗变化是相同的。为了确定运动方向,至少要放置两个光电元件,两者相距1/4莫尔条纹宽度。当光栅移动时,莫尔条纹通过两个光电元件的时间不同,所以两个光电元件所获得的电信号虽然波形相同,但相位相差90o。根据两光电元件输出信号的超前和滞后,可以确定标尺光栅移动方向。 增加线纹密度,能提高光栅检测装置的精度,但制造较困难,成本高。在实际应用中,既要提高测量精度

23、,同时又能达到自动辨向的目的,通常采用倍频或细分的方法来提高光栅的分辨精度,如果在莫尔条纹的宽度内,放置四个光电元件,每隔1/4光栅栅距产生一个脉冲,一个脉冲代表移动了1/4栅距那么大位移,分辨精度可提高四倍,这就是四倍频方案。Y6微分微分微分整形P1P2P4P3差动放大器差动放 大器整形反相反相Y1Y2Y3Y4Y5Y7Y8微分BADC图中的P1、P2、P3、P4是四块硅光电池,产生的信号相位彼此相差90o。a)原理电路图sincosABCD正向相加AB+AD+CD+BC反向相加BC+CD+AD+AB图5-22 四倍频辨向电路波形返回课件首页返回本章首页 若光栅栅距0.01mm,则工作台每移动0.0025mm,就会送出一个脉冲,即分辨率为0.0025mm。由此可见,光栅检测系统的分辨力不仅取决于光栅尺的栅距,还取决于鉴向倍频的倍数。除四倍频以外,还有十倍频、二十倍频等。光栅尺http:/

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号