逆变电源过流短路保护电路的设计

上传人:枫** 文档编号:564717713 上传时间:2022-09-19 格式:DOCX 页数:5 大小:75.77KB
返回 下载 相关 举报
逆变电源过流短路保护电路的设计_第1页
第1页 / 共5页
逆变电源过流短路保护电路的设计_第2页
第2页 / 共5页
逆变电源过流短路保护电路的设计_第3页
第3页 / 共5页
逆变电源过流短路保护电路的设计_第4页
第4页 / 共5页
逆变电源过流短路保护电路的设计_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《逆变电源过流短路保护电路的设计》由会员分享,可在线阅读,更多相关《逆变电源过流短路保护电路的设计(5页珍藏版)》请在金锄头文库上搜索。

1、逆变电源过流短路保护电路的设计由于逆变电源在电路中肩负着直流和交流之间的转换,所以其安全性 就显得尤为重要。如果逆变电源出现短路的情况,那么就有可能出现 烧毁的情况,想要有效避免短路情况的发生,就要充分重视逆变电源 中的过流短保护电路。本篇文章就将为大家介绍过流短路保护电路的 设计。现实生活中的负载大多数是冲击性负载,例如炽灯泡,在冷态时的电 阻要比点亮时低很多,像电脑,电视机等整流性负载,由于输入的交 流电经过整流后要用一个比较大的电容滤波,因而冲击电流比较大。还有冰箱等电机感性负载,电机从静止到正常转动也需要用电力产生 比较大的转矩因而起动电流也比较大。如果我们的逆变器只能设定一个能长期工

2、作的额定输出功率的话,在 起动功率大于这个额定输出功率的负载就不能起动了,这就需要按照 起动功率来配备逆变器了,这显然是一种浪费。实际中,我们在设计 过流短路保护电路时我们会设计两个保护点,额定功率和峰值功率。一般峰值功率设定为额定功率2-3倍。时间上额定功率是长时间工作 不会保护的,峰值功率一般只维持到几秒就保护了。下面进行举例说 明:如图1所示,R5为全桥髙压逆变MOS管源极的髙压电流取样电阻, 可以这么理解,髙压电流的大小基本上决定了输出功率的大小,所以 用R5检测髙压电流的大小。图1中LM339的两个比较器单元我们分 别用来做过流和短路检测。先看由IC3D及其外围元件组成的过流保护电路

3、,IC3D的8脚设定一 个基准电压,由R33、VR4、R56、R54分压决定其值U8=5* (R33+VR4) / ( R33+VR4 +R56+R54)。当R5上的电压经过R24,C17延时后超过 8脚电压14脚输出髙电平通过D7隔离到IC3B的5脚。4脚兼做电池 欠压保护,正常时5脚电压低于4脚,过流后5脚电压髙于4脚,2 脚输出髙电平控制后级的髙压MOS关断,当然也可以控制前级的MOS 一起关断。D8的作用是过流短路或电池欠压后正反馈锁定2脚为髙 电平。再看IC3C组成的短路保护电路,原理和过流保护差不多,只是延时 的时间比较短,C19的容量很小,加上LM339的速度很快,可以实现 短路

4、保护在几个微秒内关断,有效地保护了髙压MOS管的安全。顺便 说的一点是短路保护点要根据MOS管的ID,安全区域和回路杂散电 阻等参数设计。一般来说电流在ID以内,动作时间在30微秒以内是 比较安全的。IGBT的驱动和短路保护IGBT作为一种新型的功率器件,具有电压和电流容量髙等优点,开 关速度远髙于双极型晶体管而略低于MOS管,因而广泛地应用在各种 电源领域里,在中大功率逆变器中也得到广泛应用。IGBT缺点,一是集电极电流有一个较长时间的拖尾关断时间比 较长,所以关断时一般需要加入负的电压加速关断;二是抗DI/DT的 能力比较差,如果像保护MOS管一样在很大的短路电流的时候快速关 断MOS管极

5、可能在集电极引起很髙的DI/DT,使UCE由于引脚和回路 杂散电感的影响感应出很髙的电压而损坏。IGBT的短路保护一般是检测CE极的饱和压降实现,当集电极电流很 大或短路时,IGBT退出饱和区,进入放大区。上面说过这时我们不 能直接快速关断IGBT,我们可以降低栅极电压来减小集电极的电流 以延长保护时间的耐量和减小集电极的DI/DT.如果不采取降低栅极 电压来减小集电极的电流这个措施的话一般2V以下饱和压降的IGBT 的短路耐量只有5uS;3V饱和压降的IGBT的短路耐量大约10-15US, 4-5 V饱和压降的IGBT的短路耐量大约是30uS.还有一点,降栅压的时间不能过快,一般要控制在2u

6、S左右,也就 是说为了使集电极电流从很大的短路电流降到过载保护的1.2-1.5 倍一般要控制在2uS左右,不能过快,在过载保护的延时之内如果 短路消失的话是可以自动恢复的,如果依然维持在超过过载保护电流 的话由过载保护电路关断IGBT.所以IGBT的短路保护一般是配合过载保护的,下面是一个TLP250增 加慢降栅压的驱动和短路保护的应用电路图:图2中电路正常工作时,ZD1的负端的电位因D2的导通而使ZD1不 足以导通,Q1,截止;D1的负端为髙电平所以Q3也截止。C1未充电, 两端的电位为0.IGBTQ3短路后退出饱和状态,集电极电位迅速上升, D2由导通转向截止。当驱动信号为髙电平时,ZD1被击穿,C2能够 使Q1的开通有一小段的延时,使得Q3导通时可以有一小段的下降时 间,避免了正常工作时保护电路的误保护。ZD1被击穿后Q1由于C2 的存在经过一段很短的时间后延时导通,C1开始通过R4, Q1充电,D1的负端电位开始下降,当D1的负端电位开始下降到D1与Q3be结 的压降之和时Q3开始导通,Q2、Q4基极电位开始下降,Q3的栅极电 压也开始下降。当C1充电到ZD2的击穿电压时ZD2被击穿,C1停止 充电,降栅压的过程也结束,栅极电压被钳位在一个固定的电平上。Q3的集电极电流也被降低到一个固定的水平上。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号