液压伺服系统工作原理

上传人:hs****ma 文档编号:557465422 上传时间:2023-05-03 格式:DOC 页数:22 大小:2.26MB
返回 下载 相关 举报
液压伺服系统工作原理_第1页
第1页 / 共22页
液压伺服系统工作原理_第2页
第2页 / 共22页
液压伺服系统工作原理_第3页
第3页 / 共22页
液压伺服系统工作原理_第4页
第4页 / 共22页
液压伺服系统工作原理_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《液压伺服系统工作原理》由会员分享,可在线阅读,更多相关《液压伺服系统工作原理(22页珍藏版)》请在金锄头文库上搜索。

1、液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入

2、量是电位器5的给定值xi。对应给定值xi,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量xv。阀开口xv使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移xp。当xp所对应的电压与xi所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。图1 管道流量(或静压力)的电液伺服系统1流体管道;2阀板;3齿轮、齿条;4液压缸;5给定电位器;6流量传感电位器;7放

3、大器;8电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的u。图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。图2 伺服系统实例的方框图液压伺服系统的组成液压伺服系统的组成由上

4、面举例可见,液压伺服系统是由以下一些基本元件组成;输入元件将给定值加于系统的输入端的元件。该元件可以是机械的、电气的、液压的或者是其它的组合形式。反馈测量元件测量系统的输出量并转换成反馈信号的元件。各种类形的传感器常用作反馈测量元件。比较元件将输入信号与反馈信号相比较,得出误差信号的元件。放大、能量转换元件将误差信号放大,并将各种形式的信号转换成大功率的液压能量的元件。电气伺服放大器、电液伺服阀均属于此类元件;执行元件将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达。控制对象各类生产设备,如机器工作台、刀架等。液压伺服数学模型2.1 数学模型为了对伺服系统进行定量研究,应找出系

5、统中各变量(物理量)之间的关系。不但要搞清楚其静态关系,还要知道其动态特性,即各物理量随时间而变化的过程。描述这些变量之间关系的数学表达式称之为数学模型。2.1.1 微分方程伺服系统的动态行为可用各变量及其各阶导数所组成的微分方程来描述。当微分方程各阶导数为零时,则变成表示各变量间静态关系的代数方程。有了系统运动的微分方程就可知道系统各变量的静态和动态行为。该微分方程就是系统的数学模型。2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换。它是将时间域的原函数f(t)变换成复变量s域的象函数F(s),将时间域的微分方程变换成s域的代数方程。再通过代数运算求出变量为s的代数方程解。最后通过拉

6、氏反变换得到变量为t的原函数的解。数学上将时域原函数f(t)的拉氏变换定义为如下积分:而拉氏逆变换则记为实际应用中并不需要对原函数逐一作积分运算,与查对数表相似,查拉氏变换表(表1)即可求得。拉氏变换在解微分方程过程中有如下几个性质或定理:(1)线性性质设则有式中 B任意常数。(2)迭加原理这一性质极为重要,它使我们可以不作拉氏逆变换就能预料系统的稳态行为。(6)初值定理微分方程表征了系统的动态特性,它在经过拉氏变换后生成了代数方程,仍然表征了系统的动态特性。如果所有起始条件为零,设系统(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经过代数运算得(1)G(s)

7、为一个以s为变量的函数,我们称这个函数为系统(或元件)的传递函数。故系统(或元件)的动态特性也可用其传递函数来表示。传递函数是经典控制理论中一个重要的概念。用常系数线性微分方程表示的系统(或元件),在初始条件为零的条件下,经拉氏变换后,微分方程中n阶的导数项相应地变换为sn项,而系数不变。即拉氏变换后所得代数方程为一系数与原微分方程相同,以sn代替n阶导数的多项式,移项后就是其传递函数。故一个系统(或元件)的传递函数极易求得。表1 拉氏变换表(部分)原函数(t)拉氏变换函数F(s)原函数图形(t0)1单位脉冲函数(t)= 12单位阶跃函数=1(t0)=0(t0)3t4tn56(1-)7sint

8、8cost9sin(t+)10cos(t+)11cosbt12131415sinht16cosht例 如图3所示为一个质量-弹性-油阻尼系统,该系统的力平衡微分方程为(2)式中 M质量; x质量的位移; BC阻尼系数; k弹簧刚度。图3 质量-弹性-油阻尼系统经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字形式的方框图,它表示系统结构中各元件的功用及它们之间的相互连结和信号传递线路。这种方框图又称作结构方框图。另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在相应的方框中,用箭头线将这些方框连接起来,如图4所示。指向方框图的箭头表示对其输入信号;从方框图出

9、来的箭头表示输出。图中圆圈表示比较点,亦称加减点,它对二个以上信号根据其正、负进行代数运算。同一信号线上的各引出信号,数值与性质完全相同。方框图输出信号的因次,等于输入信号的因次与方程中传递函数因次的乘积。图4 系统方框图1输入信号;2比较点;3引出信号;4输出信号方框图等效变换、简化法则见表2。表2 方块图变换法则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它能够把微小的电气信号转换成大功率的液压能(流量和压力)输出。它的性能的优劣对系统的影响很大。因此,它是电液控制系统的核心和关键。为了能够正确设计和使用电液

10、控制系统,必须掌握不同类型和性能的电液伺服阀。伺服阀输入信号是由电气元件来完成的。电气元件在传输、运算和参量的转换等方面既快速又简便,而且可以把各种物理量转换成为电量。所以在自动控制系统中广泛使用电气装置作为电信号的比较、放大、反馈检测等元件;而液压元件具有体积小,结构紧凑、功率放大倍率高,线性度好,死区小,灵敏度高,动态性能好,响应速度快等优点,可作为电液转换功率放大的元件。因此,在一控制系统中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地发挥机电、液的长处。由于电液伺服阀的种类很多,但各种伺服阀的工作原理又基本相似,其分析研究的方法也大体相同,故今以常用的力反馈两级电

11、液伺服阀和位置反馈的双级滑阀式伺服阀为重点,讨论它的基本方程、传递函数、方块图及其特性分析。其它伺服阀只介绍其工作原理,同时也介绍伺服阀的性能参数及其测试方法电液伺服阀的组成 电液伺服阀在电液控制系统中的地位如图27所示。电液伺服阀包括电力转换器、力位移转换器、前置级放大器和功率放大器等四部分。3.1.1 电力转换器包括力矩马达(转动)或力马达(直线运动),可把电气信号转换为力信号。3.1.2 力位移转换器包括钮簧、弹簧管或弹簧,可把力信号变为位移信号而输出。3.1.3 前置级放大器包括滑阀放大器、喷嘴挡板放大器、射流管放大器。3.1.4 功率放大器滑阀放大器由功率放大器输出的液体流量则具有一

12、定的压力,驱动执行元件进行工作。图27 电液控制系统方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类很多,根据它的结构和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀、两级伺服阀和三级伺服阀,其中两级伺服阀应用较广。2)按液压前置级的结构形式,可分为单喷嘴挡板式、双喷嘴挡板式、滑阀式、射流管式和偏转板射流式。3)按反馈形式可分为位置反馈、流量反馈和压力反馈。4)按电-机械转换装置可分为动铁式和动圈式。5)按输出量形式可分为流量伺服阀和压力控制伺服阀。6)按输入信号形式可分为连续控制式和脉宽调制式。伺服阀的工作原理伺服阀的工作原理下面介绍两种主要的伺服阀工作原理。3.3.1力反馈式

13、电液伺服阀力反馈式电液伺服阀的结构和原理如图28所示,无信号电流输入时,衔铁和挡板处于中间位置。这时喷嘴4二腔的压力pa=pb,滑阀7二端压力相等,滑阀处于零位。输入电流后,电磁力矩使衔铁2连同挡板偏转角。设为顺时针偏转,则由于挡板的偏移使papb,滑阀向右移动。滑阀的移动,通过反馈弹簧片又带动挡板和衔铁反方向旋转(逆时针),二喷嘴压力差又减小。在衔铁的原始平衡位置(无信号时的位置)附近,力矩马达的电磁力矩、滑阀二端压差通过弹簧片作用于衔铁的力矩以及喷嘴压力作用于挡板的力矩三者取得平衡,衔铁就不再运动。同时作用于滑阀上的油压力与反馈弹簧变形力相互平衡,滑阀在离开零位一段距离的位置上定位。这种依靠力矩平衡来决定滑阀位置的方式称为力反馈式。如果忽略喷嘴作用于挡板上的力,则马达电磁力矩与滑阀二端不平衡压力所产生的力矩平衡,弹簧片也只是受到电磁力矩的作用。因此其变形,也就是滑阀离开零位的距离和电磁力矩成正比。同时由于力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是通过滑阀的流量与输入电流成正比,并且电流的极性决定液流的方向,这样便满足了对电液伺服阀的功能要求。图28 力反馈式伺服阀的工作原理1永久磁铁;2衔铁;3扭轴;4喷嘴;5弹簧片;6过滤器;7滑阀;8线圈;9轭铁由于采用了力反馈,力矩马达基本上在零位附近工作,只要求其输出电磁

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号