人教A版高中数学必修四教案:3.2简单的三角恒等变换2

上传人:pu****.1 文档编号:547950387 上传时间:2022-10-11 格式:DOC 页数:6 大小:370KB
返回 下载 相关 举报
人教A版高中数学必修四教案:3.2简单的三角恒等变换2_第1页
第1页 / 共6页
人教A版高中数学必修四教案:3.2简单的三角恒等变换2_第2页
第2页 / 共6页
人教A版高中数学必修四教案:3.2简单的三角恒等变换2_第3页
第3页 / 共6页
人教A版高中数学必修四教案:3.2简单的三角恒等变换2_第4页
第4页 / 共6页
人教A版高中数学必修四教案:3.2简单的三角恒等变换2_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《人教A版高中数学必修四教案:3.2简单的三角恒等变换2》由会员分享,可在线阅读,更多相关《人教A版高中数学必修四教案:3.2简单的三角恒等变换2(6页珍藏版)》请在金锄头文库上搜索。

1、 第2课时(一)导入新课 思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:=(+)-,2=(+)+(-)=(+)-(-),+=-(-)等,你能总结出三角变换的哪些策略?由此探讨展开. 思路2.(复习导入)前面已经学过如何把形如y=asinx+bcosx的函数转化为形如y=Asin(x+)的函数,本节主要研究函数y=asinx+bcosx的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形

2、为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.(二)推进新课、新知探究、提出问题三角函数y=sinx,y=cosx的周期,最大值和最小值是多少?函数y=asinx+bcosx的变形与应用是怎样的?三角变换在几何问题中有什么应用? 活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2k(kZ且k0),最小正周期都是2.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx的周

3、期是2k(kZ且k0),且最小正周期是2,函数y=sin2x的周期是k(kZ且k0),且最小正周期是.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是-1,1.函数y=asinx+bcosx=(cosx),(,则有asinx+bcosx=(sinxcos+cosxsin)=sin(x+).因此,我们有如下结论:asinx+bcosx=sin(x+),其中tan=.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题. 我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过

4、三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:y=sinx,y=cosx的周期是2k(kZ且k0),最小正周期都是2;最大值都是1,最小值都是-1.(略)见活动.(三)应用示例思路1例1 如图1,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记COP=,求当角取何值时,矩形ABCD的面积最大?并求出这个最大面积. 活动:要求当角取何值时,矩形ABCD的面积S最大,先找出S与之间的函数关系,再求函数的最值.找S与之间的函数关系可以让学生自己解决,得到:S=ABBC=(cossin)sin=sincos-sin2.求这种y=asin2x+bs

5、inxcosx+ccos2x函数的最值,应先降幂,再利用公式化成Asin(x+)型的三角函数求最值.教师引导学生思考:要求当角取何值时,矩形ABCD的面积S最大,可分两步进行:图1(1)找出S与之间的函数关系;(2)由得出的函数关系,求S的最大值.解:在RtOBC中,BC=cos,BC=sin,在RtOAD中,=tan60=,所以OA=DA=BC=sin.所以AB=OB-OA=cossin.设矩形ABCD的面积为S,则S=ABBC=(cossin)sin=sincossin2=sin2+cos2-=(sin2+cos2)-=sin(2+)-.由于00).(1)求函数f(x)的值域;(2)若函数

6、y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.解:(1)f(x)=sinx+cosx+sinx-cosx-(cosx+1)=2(sinx-cosx)-1=2sin(x-)-1.由-1sin(x-)1,得-32sin(x-)-11,可知函数f(x)的值域为-3,1.(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为,又由0,得=,即得=2.于是有f(x)=2sin(2x-)-1,再由2k-2x-2k+(kZ),解得k-xk+(kZ). 所以y=f(x)的单调增区间为k-,k+(kZ). 点评:本题主要考查三角函数公式,三角函数图象和性质等基

7、础知识,考查综合运用三角函数有关知识的能力.例1 求函数y=sin4x+23sinxcosx-cos4x的最小正周期和最小值;并写出该函数在0,上的单调递增区间. 活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y=sin4x+2sinxcosx-cos4x=(sin2x+cos2x)(sin2x-cos2x)+sin2x=sin2x-cos2x=2sin(2x-). 故该函数的最小正周期是;最小值是-2;在0,上单调增区间是0, ,. 点评:本题主要考查二倍角公式以及三角函数的单调性

8、和周期性等基础知识.变式训练已知函数f(x)=cos4x-2sinxcosx-sin4x,(1)求f(x)的最小正周期;(2)若x0,求f(x)的最大、最小值.解:f(x)=cos4x-2sinxcosx-sin4x=(cos2x+sin2x)(cos2x-sin2x)-sin2x=cos2x-sin2x=cos(2x+),所以,f(x)的最小正周期T=.(2)因为x0,,所以2x+,.当2x+=时,cos(2x+)取得最大值,当2x+=时,cos(2x+)取得最小值-1.所以,在0,上的最大值为1,最小值为-.思路2例1 已知函数f(x)=sin(x+)(0,0)是R上的偶函数,其图象关于点

9、M(,0)对称,且在区间0,上是单调函数,求和的值. 活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R上的函数y=f(x)对定义域内任意x满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f(x)是偶函数,得f(-x)=f(x),即sin(-x+)=sin(x+),所以-cossinx=cossinx对任意x都成立.又0,所以,得cos=0.依题设0,

10、所以,解得=.由f(x)的图象关于点M对称,得f(-x)=-f(+x).取x=0,得f()=-f(),所以f()=0.f()=sin(+)=cos,cos=0.又0,得=+k,k=0,1,2,.=(2k+1),k=0,1,2,.当k=0时,=,f(x)=sin(x+)在0,上是减函数;当k=1时,=2,f(x)=sin(2x+)在0,上是减函数;当k2时,f(x)=sin(x+)在0,上不是单调函数.所以,综合得=或=2. 点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.变式训练 已知如图2的RtABC中,A=90,a为斜边,B、C的内角平分线BD、

11、CE的长分别为m、n,且a2=2mn.问:是否能在区间(,2中找到角,恰使等式cos-sin=4(cos-cos)成立?若能,找出这样的角;若不能,请说明理由.解:在RtBAD中,=cos,在RtBAC中, =sinC,mcos=asinC.图2同理,ncos=asinB.mncoscos=a2sinBsinC.而a2=2mn,coscos=2sinBsinC=8sincoscossin.sinsin=.积化和差,得4(cos-cos)=-1,若存在使等式cos-sin=4(cos-cos)成立,则cos(+)=-1,cos(+)=.而2,+.这样的不存在. 点评:对于不确定的开放式问题,通常

12、称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设推证定论.例2 已知tan(-)=,tan=,且,(0,),求2-的值.解:2-=2(-)+,tan(-)=,tan2(-)=.从而tan(2-)=tan2(-)+=.又tan=tan(-)+=1.且0,0.02.又tan=0,且(0,),-.-2-0.2-=. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若(0,),则求cos;若(,),则求sin等.变式训练 若,为锐角,且3sin2+2sin2=1,3sin2-2sin2=0,求证:+2=.证明:已知两个等式可化为3sin2=cos2, 3sincos=sin2, ,得=,即coscos2-sinsin2=0,cos(+2)=0.0,0,0+2.+2=.(四)课堂小结 本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=Asin(x+)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.(五)作业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号