UASB和IC反应器的原理及设计

上传人:cl****1 文档编号:511198997 上传时间:2023-12-06 格式:DOCX 页数:22 大小:878.18KB
返回 下载 相关 举报
UASB和IC反应器的原理及设计_第1页
第1页 / 共22页
UASB和IC反应器的原理及设计_第2页
第2页 / 共22页
UASB和IC反应器的原理及设计_第3页
第3页 / 共22页
UASB和IC反应器的原理及设计_第4页
第4页 / 共22页
UASB和IC反应器的原理及设计_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《UASB和IC反应器的原理及设计》由会员分享,可在线阅读,更多相关《UASB和IC反应器的原理及设计(22页珍藏版)》请在金锄头文库上搜索。

1、#目录UASB反应器1一、UASB原理1二、UASB反应器的构成21、三相分离器的原理32、进水和配水系统的要求3三、UASB反应器的主要设备41、反应器的池体42、三相分离器的设计83、进水分配系统10四、其他设计考虑141、配水管道设计142、出水系统的设计153、排泥系统的设计154、浮渣清除方法的考虑165、防腐措施16五、附属设备171、剩余沼气燃烧器172、保温加热设备173、监控设备17IC反应器18一、IC反应器的原理18二、IC反应器的设计201、COD容积负荷的确定202、三相分离器203、配水系统204、循环系统215、高径比的控制216、其他22UASB反应器一、UAS

2、B原理UASB反应器废水被尽可能均匀的引入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。厌氧反应发生在废水和污泥颗粒接触的过程。在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。置于极其使单元缝隙之下的挡板的作用为气体发射器和防止沼气气泡进入沉淀区,否则将引起沉淀区的絮动,会阻碍颗粒沉淀

3、。包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。由于流速降低污泥絮体在沉淀区可以絮凝和沉淀。累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,其将滑回反应区,这部分污泥乂将与进水有机物发生反应。二、UASB反应器的构成UASB反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。在UASB反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体/颗粒的满意的沉淀效果,三相分离器第一个主要的目

4、的就是尽可能有效地分离从污泥床/层中产生的沼气,特别是在高负荷的情况下,在集气室下面反射板的作用是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利丁减少反应室内高产气量所造成的液体絮动。反应器的设计应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室(应该认识到有时污泥层膨胀到沉淀器中不是一件坏事。相反,存在丁沉淀器内的膨胀的泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用)。只一方面,存在一定可供污泥层膨胀的自由空间,以防止重的污泥在暂时性的有机或水力负荷冲击下流失是很重要的。水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床

5、的膨胀。UASB系统原理是在形成沉降性能良好的污泥凝絮体的基础上,并结合在反应器内设置污泥沉淀系统使气、液、固三相得到分离。形成和保持沉淀性能良好的污泥(其可以是絮状污泥或颗粒型污泥)是UASB系统良好运行的根本点。1、三相分离器的原理在UASB反应器中的三相分离器(GLS)是UASB反应器最有特点和最重要的装置。它同时具有两个功能:能收集从分离器下的反应室产生的沼气;使得在分离器之上的悬浮物沉淀下来。对上述两种功能均要求三相分离器的设计避免沼气气泡上升到沉淀区,如其上升到表面将引起出水混浊.降低沉淀效率,并且损失了所产生的沼气。设计三相分离器的原则是:间隙和出水面的截而积比影响到进入沉淀区和

6、保持在污泥相中的絮体的沉淀速度。分离器相对于出水液面的位置确定反应区(下部)和沉淀区(上部)的比例。在多数UASB反应器中内部沉淀区是总体积的15%20%。(1) 三相分离器的倾角这个角度要使固体可滑回到反应器的反应区,在实际中是在4560C之间。这个角度也确定了三相分离器的高度,从而确定了所需的材料。分离器下气液界面的面积确定了沼气的释放速率。适当的释放率大约是13m3/(m2h)。速率低有形成浮渣层的趋势,非常高导致形成气沫层,两者都导致堵塞释放管。对于低浓度污水处,当水力负荷是限制性设计参数时,在三相分离器缝隙处保持大的过流面积,使得最大的上升流速在这一过水断面上尽可能的低是十分重要的。

7、原则上只有出水截面的面积(而不是缝隙面积)才是决定保持在反应器中最小沉速絮体的关键。2、进水和配水系统的要求进水系统兼有配水和水力搅拌的功能,为了保证这两个功能的实现,需要满足如下原则:(1) 进水装置的设计使分配到各点的流量相同,确保单位面积的进水量基本相同,防止发生短路等现象;(2) 很容易观察进水管的堵塞,当堵塞发现后、必须很容易被活除。(3) 应尽可能的(虽然不是必须的)满足污泥床水力搅拌的需要,保证进水有机物与污泥迅速混合.防止局部产生酸化现象。为确保进水等量地分布在池底,每个进水管仅与一个进水点相连接是最理想状态,只要保证每根配水管流量相等,即可取得均匀布水的要求;因此有必要采用特

8、殊的布水分配装置,以保证一根配水管只服务一个配水点,为了保证每一个进水点达到应得的进水流量,建议采用高丁反应器的水箱式(或渠道式)进水分配系统。图11给出了一种连续流的布水器形式,这种敞开的布水器的一个好处是可以容易用肉眼观察堵塞情况。对高浓度废水由丁水力负荷较低,采用脉冲式进水分配装置是一种较好的选择。图ill一种连续流的布水器形式三、UASB反应器的主要设备1、反应器的池体有两种基本几何形状的UASB反应器:即矩形和圆形。这两种类型的反应器都已大量应用丁实际中。圆形反应器具有结构较稳定的优点,同时对丁圆形反应器在同样的面积下,其周长比正方形的少12%。所以圆形池子的建造费用比具有相同面积的

9、矩形反应器至少要低12%。但是圆形反应器的这一优点仅仅在采用单个池子时才成立,所以,单个或小的反应器可以建造成圆形的。而大的反应器经常建成矩形的或方形的。当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。当建造多个矩形反应器时有其优越性。对丁采用公共壁的矩形反应器,池型的长宽比对造价也有较大的影响。对丁大型UASB反应器建造多个池子的系统是有益的,这可以增加处理系统的适应能力。如果有多个反应池的系统,则可能关闭一个进行维护和修理,而其他单元的反应器继续运行。混凝土结构的UASB反应器是最为常见的结构和材料型式,但是采用标准化和系列化的设计必须考虑结构的通用性和简单性,在此基础上形成的系列

10、化设计才能有生命力和推广的价值。(1)平面布置池体的标准化主要是根据三相分离器的尺寸进行布置的,目前生产的三相分离器的平面尺寸是2mx5m。根据这一形式布置池体有以下几种方式(图2-3、2-4和2-5)。图2-3中(a)为整个池表面均采用三相分离器的形式,而(b)是池顶的一部分采用池体本身结构构成气室;这样可以节省一部分三相分离器的投资。整个池子分成单池单个分离器、双池每池单个分离器和单池两个分离器的形式,很明显如果需要也可以构成双池每池两组分离器的形式。由丁三相分离器的尺寸的原因,所以池子的宽度是以5m为模数,长度方向是以2m为模数。原则上如果采用管道或渠道布水,池子的长度是不受限制。如前所

11、述出丁反应器的长宽比的范围涉及到建筑物的经济性,所以在上述范围内选择要结合池子组数考虑适当的长宽比。f必整个池面布满三相分离器部分池面采用三招分两器E3矩形单油UASE反皮器装配式三相分固辔和反应甜平面尺寸布置由丁反应器的高度推荐范围为46m,表2-1给出了5m高的反应器的尺寸选择的系歹0。从原则上讲安排2mx5m的三相分离器的平面布置还可以有其他多种的平面配合形式如,宽度可以以2m为模数,而长度以10m为模数。构成4mx5m,4mx10m,6mx5m,6mx10m,6mx15m,的系列。甚至可以采用三相分离器横竖混合布置的形式。但是考虑通用性和简单性的原则,推荐表2-1的组合方式。(h)部分

12、池面采月切相分离器nnHUW整个池面布满三相分离罪图24妊形双池UASB反应器装配式三相分离器和反应器平面尺寸布置uGQJL2iQl2DQCLJ2W0;210D.2tMHJ-!300l3(短个池面布满三相分离器5部分他而采用三招胡离器图2r5矩形堂池大黔度的UASB反应器装配式三相分葛器和反题器平面尺寸布表1婚影底应器的平面尺寸和有效体积的逸用表格H本积单偷:忌)池型(m)r6R1012141620212426单.池5150200250am350400450500550600&50取池5L3004W5(X)600700R(NWOiax)1100i2DC1300池犯、瑚硕宽10121416202

13、23426ISI一3D1二_单池50U600TOO碰900I0001IQQ1300:3ft)14001500双池101DOO1斓140&1600ismworn220024X)0尬】30MJ在;反应群刊有效高度为5盹,(2)设备固定形式三相分离器设备固定的形式可以采用牛腿和工字钢支撑的两种形式(图2-6)。需要说明的是由丁运行过程中,三相分离器的气室内有一定量的沼气,所以会形成比较大的浮力,需要考虑上部的固定措施,固定措施可以借助出水管和出气管,以及其他形式。池底同样可以采用两种不同的形式(图2-7).其中对丁典型的UASB反应器推荐采用因2-7(b)的形式,因为这种结构可以避免布水不均匀形成的

14、死区问题:同时可以减少布水管的投资,但是会增加一定的土建投资。图2-8是采用混凝土反应器的工程图示意,从图见到的是一种可整体安装的三相分离器设计形式。%)二字钢支撑(6)采用牛腿支撑图M采用牛腿和工字钢支撑的两种形式(b)图2r7ifc底同样可以采用不同的两种结构璃式M矩股混篇土反庞器的工程剖面图2、三相分离器的设计通过对不同大小三相分离器的分析,可以发现三相分离器设计的关键是图2-16(b)和(c)圆圈中所示的平行四边形中的流速关系。要求选择合理的缝隙宽度(b)和斜面长度(或遮盖宽度),以防止UASB消化区中产生的气泡被上升的液流火带入沉淀区,造成污泥流失。由图2-16(b)可见,当气泡随液

15、流以速度v沿分离器缝隙上升时,它同时具有垂直向上的速度Vp。在由B点移至A点时,在垂直方向上向上移动距离AC,因此满足以下关系式:AC/ABVp/V若已知气泡的直径和水温,则Vp由斯托克斯公式等求出。问题是V怎么求,为了简化问题,同时也为了方便、安全,可按下式求V:V二Q(/bB-n)式中:QUASB装置设计流量B装置宽度;缝隙条数;b缝隙宽度。以上计算方法也可类推丁其它形式的三相分离器的设计,如图2-16c。水封高度计算水封高度是控制污泥床反应器小气室高度的参数。根据图216(c)反应器中气室的高度h2是由水封有效高度H来加以控制。H的计算值应为:H=h2+h4-H2式中:H为水封后面可能产生的阻力。分离器锥体的高度h4,一股与所采用的直径有关。h4值的选择应保证气室出气管畅通无阻,防止浮渣堵塞出气管。从实践来看,气室水面上总是有一层浮渣,浮渣的厚度与水质有关,例如,含难消化短纤维较多的污水,浮渣就较多。因此在选择h4时

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 活动策划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号