无损检测超声探伤UT基础讲义

上传人:大米 文档编号:467174794 上传时间:2023-12-10 格式:DOCX 页数:19 大小:37.12KB
返回 下载 相关 举报
无损检测超声探伤UT基础讲义_第1页
第1页 / 共19页
无损检测超声探伤UT基础讲义_第2页
第2页 / 共19页
无损检测超声探伤UT基础讲义_第3页
第3页 / 共19页
无损检测超声探伤UT基础讲义_第4页
第4页 / 共19页
无损检测超声探伤UT基础讲义_第5页
第5页 / 共19页
点击查看更多>>
资源描述

《无损检测超声探伤UT基础讲义》由会员分享,可在线阅读,更多相关《无损检测超声探伤UT基础讲义(19页珍藏版)》请在金锄头文库上搜索。

1、培训教材之理论根底第一章无损检测概述无损检测包括射线检测RF、超声检测UT、磁粉检测MT、渗透检测PT和涡流检测ET 等五种检测方法。主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其 它制品。 射线检测适用于碳素钢、低合金钢、铝与铝合金、钛与钛合金材料制机械、器件等的焊缝与钢管对接环缝。 射线对人体不利,应尽量防止射线的直接照射和散射线的影响。超声检测系指用 A 型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测 以与超声测厚。磁粉检测适用于铁磁性材料制品与其零部件外表、近外表缺陷的检测,包括干磁粉、湿磁粉、荧光和 非荧光磁粉检测方法。渗透

2、检测适用于金属制品与其零部件外表开口缺陷的检测,包括荧光和着色渗透检测。 涡流检测适用于管材检测,如圆形无缝钢管与焊接钢管、铝与铝合金拉薄壁管等。磁粉、渗透和涡流统称为外表检测。第二章超声波探伤的物理根底第一节根本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理根底。 物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。振动的传播过程,称 为波动。波动分为机械波和电磁波两大类。机械波是机械振动在弹性介质中的传播过程。超声波就是一种 机械波。机械波主要参数有波长、频率和波速。波长:同一波线上相邻两振动相位一样的质点间的距离称为波 长,波源或介质中任意一质点完成一次全振动

3、,波正好前进一个波长的距离,常用单位为米(m);频率f: 波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率常用单位为赫兹(Hz);波速C:波动中, 波在单位时间内所传播的距离称为波速,常用单位为米/秒m/s。由上述定义可得:C二f,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长; 当波速一定时,频率愈低,波长就愈长。次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度一样。 它们的区别在主要在于频率不同。频率在2020000Hz之间的能引起人们听觉的机械波称为声 波,频率低于20Hz的机械波称为次声波,频率高于20000Hz的机械波称为超声

4、波。次声波、超声波不可 闻。超声探伤所用的频率一般在0.510MHz之间,对钢等金属材料的检验,常用的频率为 15MHz 超声波波长很短,由此决定了超声波具有一些重要特性,使其能广泛用于无损探伤。1 .方向性好:超声波是频率很高、波长很短的机械波,在无损探伤中使用的波长为毫米级;超声波 象光波一样具有良好的方向性,可以定向发射,易于在被检材料中发现缺陷。2 .能量高:由于能量声强与频率平方成正比,因此超声波的能量远大于一般声波的能量。3,能在界面上产生反射、折射和波型转换;血击波具有几何声学的上一些特点,如在介质中直线传 播,遇界面产生反射、折射和波型转换等。4,穿透能力强:超声波在大多数介质

5、中传播时,传播能量损失小,传播距离大,穿透能力强,在一 些金属材料中其穿透能力可达数米。第二节波的类型与波速测量一. 波的类型 根据波动传播时介质质点的振动方向相对于波的传播方向的不同,可将波动分为纵波、横波、外表 波和板波等。1纵波L介质中质点的振动方向与波的传播方向互相平行的波,称为纵波,用L表示。当介质质点受到交变拉压应力作用时,质点之间产生相应的伸缩形变,从而形成纵波;凡能承受拉 伸或压缩应力的介质都能传播纵波。固体介质能承受位伸或压缩应力;液体和气体虽不能承受拉伸应力 但能承受压应力产生容积变化。因此固体、液体和气体都能传播纵波。钢中纵波声速一般为5960m/so纵 波一般应用于钢板

6、、锻件探伤。2, 横波 S(T)介质中质点的振动方向与波的传播方向互相垂直的波,称为横波,用S或T表示。 当介质质点受到交变的剪切应力作用时,产生剪切形变,从而形成横波;只有固体介质才能承受剪 切应力,液体和气体介质不能承受剪切应力,因此横波只能在固体介质中传播,不能在液体和气体介质 中传播。钢中横波声速一般为3230m/s。横波一般应用于焊缝、钢管探伤。3, 外表波 R 当介质外表受到交变应力作用时,产生沿介质外表传播的波,称为外表波,常用 R 表示。又称瑞利波。外表波在介质外表传播时,介质外表质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于 波的传播方向;椭圆运动可视为纵向振动与横向

7、振动的合成,即纵波与横波的合成,因此外表波只能在 固体介质中传播,不能在液体和气体介质中传播。外表波的能量随深度增加而迅速减弱,当传播深度超过两倍波长时,质点的振幅就已经很小了,因 此,一般认为外表波探伤只能发现距工件外表两倍波长深度内的缺陷。外表波一般应用于钢管探伤。4, 板波 在板厚与波长相当的薄板中传播的波,称为板波。根据质点的振动方向不同可将板波分为 SH 波和兰姆波。板波一般应用于薄板、薄壁钢管探伤。二. 超声波声速测量 对探伤人员来说,用探伤仪测量声速是最简便的,用这种方法测声速,可用单探头反射法或双探头 穿透法;可用于测纵波声速和横波声速。1, 反射法测纵波声速声速按下式计算:声

8、速 C=2d/(Ti-t);t=2Ti-T2式中 d工件厚度;t由探头晶片至工件外表传输时间;2/21Ti由探头晶片至工件底二赢传输时间;T2由探头晶片至工件底二次波传输时间;2 . 穿透法测纵波声速声速按下式计算:声速 C=d/(Ti-t);t=2Ti-T2式中 d工件厚度;t由探头晶片至工件外表传输时间;Ti由探头晶片至工件底一次波传输时间;T2由探头晶片至工件底二次波传输时间;3 . 反射法测横波声速用半圆弧测横波声速,按下式计算:声速 C=2d/(Ti-t);t=2Ti-T2式中 d半圆半径长度;t由探头晶片至半圆弧探测面传输时间;Ti由探头晶片至圆弧面一次波传输时间;T2由探头晶片至

9、圆弧面二次波传输时间;第三节波的假如干概念一. 波的迭加与干预1 . 波的迭加原理 当几列波在同一介质中传播时,如果在空间某处相遇,如此相遇处质点的振动是各列波引起振动的 合成,在任意时刻该质点的位移是各列波引起的位移的矢量和。几列波相遇后仍保持自己原有的频率、 波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其他波一样,这就是 波的迭加原理,又称波的独立性原理。波的迭加现象可以从许多事实观察到,如两石子落水,可以看到两个石子入水处为中心的圆形水波 的迭加情况和相遇后的传播情况。又如乐队合奏或几个人谈话,人们可以分辨出各种乐器或各人的声音 这些都可以说明波传播的独立性。

10、2 . 波的干预 两列频率一样,振动方向一样,位相一样或位相差恒定的波相遇时,介质中某些地方的振动互相加 强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干预现象。波的迭加原理是波的干预现象的根底,波的干预是波动的重要特征。在超声波探伤中,由于波的干 预,使超声波源附近出现声压极大极小值。二. 惠更斯原理和波的衍射如前所述,波动是振动状态的传播,如果介质是连续的,那么介质中任何质点的振动都将引起邻近质 点的振动,邻近质点的振动又会引起较远质点的振动,因此波动中任何质点都可以看作是新的波源。据此 惠更斯提出了著名的惠更斯原理:介质中波动传播到的各点都可以看作是发射子波的波源,在其后任意时

11、刻这些子波的包迹就决定新的波阵面。2. 波的衍射绕射 波在传播过程中遇到与波长相当的障碍物时,能绕过障碍物边缘改变方向继续前进的现象, 称为波的衍射或波的绕射。如右图,超声波波长为在介质中传播时遇到缺陷AB其尺寸为D,据惠更斯原理,缺陷边歪了:缘可以看作是发射子波的波源,使波的传,从而使缺陷背后的声影缩小,反射波降低。当D时,反射强,绕射弱,声波几乎全反射。波的绕射对探伤即有利又不利。由于波的绕射,使超声波产生晶料绕射顺利地在介质中传播,这对探伤有利;但同时由于波的绕射,使一些小缺陷回波显著下降,以致造成漏检,这对探伤不利。一般超声波探伤灵敏度约为/2。三. 超声场的特征值充满超声波的空间或超

12、声振动所波与的局部介质,叫超声场;超声场具有一定的空间大小和形状,只 有当缺陷位于超声场内时,才有可能被发现。描述超声场的特征植即物理量主要有声压、声强和声阻 抗。超声场中某一点在某一时刻所具有的压强Pj与没有超声波存在时的静态压强P0之差,称为该点的声压,用P表示P=P-P0。声压幅值 p=cu=c(2fA)其中介质的密度;c波速;u质点的振动速度;A声压最大幅值;f 频率。超声场中某一点的声压的幅值与介质的密度、波速和频率成正比。在超声波探伤仪上,屏幕上显示的 波高与声压成正比。超声场中任一点的声压p与该处质点振动速度u之比称为声阻抗,常用Z表示。Z=p/u=cu/u=c由上式可知,声阻抗

13、的大小等于介质的密度与波速的乘积。由u二P/Z可知,在同一声压下,Z增加,质点的 振动速度下降。因此声阻抗Z可理解为介质对质点振动的阻碍作用。超声波在两 种介质组成的界面上的反射和透射情况与两种介质的声阻抗密切相关。单位时间内垂直通过单位面积的声能称为声强,常用 I 表示。I=Zu2/2=P2/(2Z)当超声波传播到介质中某处时,该处原来静止不动的质点开始振动,因而具有动能;同时该处介质产生 弹性变形,因而也具有弹性位能;声能为两者之和。声波的声强与频率平方成正比,而超声波的频率远大于可闻声波。因此超声波的声强也远大于可闻声波 的声强。这是超声波能用于探伤的重要原因。在同一介质中,超声波的声强

14、与声压的平方成正比。四. 分贝的概念与应用1. 概念由于在生产和科学实验中,所遇到的声强数量级往往相差悬殊,如引起听觉的声强X围为10-16-104瓦/厘米2, 最大值与最小值相差12个数量级。显然采用绝对量来度量是不方便的,但如果对其比值 相对量取对数来比拟计算如此可大简化运算。分贝就是两个同量纲的量之比取对数后的单位。通常规定引起听觉的最弱声强为I1=10,6瓦/厘米2作为声强的标准,另一声强12与标准声弓HI1之比的常 用对数称为声强级,单位是贝尔(BeL)。实际应用时贝尔太大,故常取1/10贝尔即分贝dB来作单位。如 取自然对数,如此单位为奈培 NP=lg(I2/I1)(Bel)=10

15、lg(I2/I1)=20lg(P2/P1)(dB)在超声波探伤中,当超声波探伤仪的垂直线性较好时,仪器屏幕上的波高与声压成正比。这时有=20lg(P2/P1)=20lg(H2/H1)(dB)这时声压基准P,或波高基准H可以任意选取。2. 应用 分贝用于表示两个相差很大的量之比显得很方便,在声学和电学中都得到广泛的应用,特别是在超声波 探伤中应用更为广泛。例如屏上两波高的比拟就常常用dB表示。例如,屏上一波高为 80%,另一波高为 20%,如此前者比后者高=20lg(H2/H1)=20lg(80/20)=12 dB用分贝值表示回波幅度的相互关系,不仅可以简化运算,而且在确定基准波高以后,可直接用仪器的增益值 数字机或衰减值模拟机来表示缺陷波相对波高。第四节波的反射、透射与衰减 超声波从一种介质传播到另一种介质时,在两种介质的分界面上,一局部能量反射回原介质内,称为反 射波;另一局部能量透过界面在另一种介质内传播,称为透射波。在界面上声能声压、声强的分配和传 播方向的变化都将遵循一定的规律。一 .单一界面的反射和透射声能的变化与两种介质的声阻抗密切相关,设波从介质1声阻抗乙入射到介质

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 解决方案

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号