《2022年江苏省数学试卷及答案【精校版】》由会员分享,可在线阅读,更多相关《2022年江苏省数学试卷及答案【精校版】(12页珍藏版)》请在金锄头文库上搜索。
1、2014年江苏数学试题数学试题参考公式:圆柱的侧面积公式:S圆柱=cl, 其中c是圆柱底面的周长,l为母线长.圆柱的体积公式:V圆柱=Sh,其中S是圆柱的底面积,h为高。一、填空题:本大题共14小题,每小题5分,共计70分。请把答案填写在答题卡相应位置上.1已知集合,则【答案】2已知复数(i为虚数单位),则z的实部为【答案】213右图是一个算法流程图,则输出的n的值是【答案】54从这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是【答案】5已知函数与,它们的图象有一个横坐标为的交点,则的值是【答案】6为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得
2、数据均在区间上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100 cm【答案】247在各项均为正数的等比数列中,若,则的值是【答案】48设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是【答案】9在平面直角坐标系xOy中,直线被圆截得的弦长为【答案】10已知函数,若对任意,都有成立,则实数m的取值范围是【答案】11在平面直角坐标系xOy中,若曲线(为常数)过点,且该曲线在点P处的切线与直线平行,则的值是【答案】12如图,在平行四边形ABCD中,已知,则的值是【答案】2213已知是定义在R上且周期为3的函数,当时,若函数在区间上有10个零点
3、(互不相同),则实数a的取值范围是【答案】14若的内角满足,则的最小值是【答案】二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内作答, 解答时应写出文字说明、证明过程或演算步骤。15(本小题满分14 分)已知,(1)求的值;(2)求的值【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力。 满分14分。(1),;(2)16(本小题满分14 分)如图,在三棱锥中,分别为棱的中点已知(1)求证:直线PA平面DEF;(2)平面BDE平面ABC【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分
4、14分。(1)为中点 DEPA平面DEF,DE平面DEFPA平面DEF(2)为中点 为中点 ,DEEF,DE平面ABCDE平面BDE, 平面BDE平面ABC17(本小题满分14 分)如图,在平面直角坐标系xOy中,分别是椭圆的左、右焦点,顶点B的坐标为,连结并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结(1)若点C的坐标为,且,求椭圆的方程;(2)若,求椭圆离心率e的值【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力。 满分14分。(1),椭圆方程为(2)设焦点关于x轴对称,三点共线,即,即联立方程组,解得C在椭圆上,,化简得,
5、故离心率为18(本小题满分16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力。满分16分。解法一:(1) 如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.
6、由条件知A(0, 60),C(170, 0),直线BC的斜率kBC=tanBCO=。又因为ABBC,所以直线AB的斜率kAB=.设点B的坐标为(a,b),则kBC=kAB=解得a=80,b=120. 所以BC=.因此新桥BC的长是150 m。(2)设保护区的边界圆M的半径为rm,OM=d m,(0d60)。由条件知,直线BC的方程为,即由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即。因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大.所以当OM = 10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA, CB交于点F。因为
7、tanBCO=.所以sinFCO=,cosFCO=.因为OA=60,OC=170,所以OF=OCtanFCO=.CF=,从而.因为OAOC,所以cosAFB=sinFCO=,又因为ABBC,所以BF=AF cosAFB=,从而BC=CFBF=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M与BC的切点为D,连接MD,则MDBC,且MD是圆M的半径,并设MD=r m,OM=d m(0d60).因为OAOC,所以sinCFO =cosFCO,故由(1)知,sinCFO =所以。因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大.所以当OM
8、= 10 m时,圆形保护区的面积最大.19(本小题满分16分)已知函数其中e是自然对数的底数(1)证明:是上的偶函数;(2)若关于x的不等式在上恒成立,求实数m的取值范围;(3)已知正数a满足:存在,使得成立试比较与的大小,并证明你的结论【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力。满分16分.(1),是上的偶函数(2)由题意,,即,即对恒成立令,则对任意恒成立,当且仅当时等号成立(3),当时,在上单调增令,,,即在上单调减存在,使得,即设,则当时,,单调增;当时,,单调减因此至多有两个零点,而当时,,;当时,,;当时,20(本
9、小题满分16分)设数列的前n项和为若对任意的正整数n,总存在正整数m,使得,则称是“H数列”(1)若数列的前n项和,证明:是“H数列”;(2)设是等差数列,其首项,公差若是“H数列”,求d的值;(3)证明:对任意的等差数列,总存在两个“H数列和,使得成立【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当时,当时,时,,当时,是“H数列(2)对,使,即取得,,又,,(3)设的公差为d令,对,对,则,且为等差数列的前n项和,令,则当时;当时;当时,由于n与奇偶性不同,即非负偶数,因此对,都可找到,使成立,即为“H数列”的前项和,令,则对,是非负
10、偶数,即对,都可找到,使得成立,即为“H数列”因此命题得证.数学(附加题)21。【选做题】本题包括A, B,C,D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分。解答时应写出文字说明、证明过程或演算步骤。A。【选修41:几何证明选讲】(本小题满分10分) 如图,AB是圆O的直径,C、 D是圆O 上位于AB异侧的两点 证明:OCB=D。本小题主要考查圆的基本性质,考查推理论证能力。满分10分。证明:因为B, C是圆O上的两点,所以OB=OC。 故OCB=B。 又因为C, D是圆O上位于AB异侧的两点, 故B,D为同弧所对的两个圆周角, 所以B=D。 因此OCB
11、=D.B.【选修42:矩阵与变换】(本小题满分10分)已知矩阵,,向量,为实数,若,求的值【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.,由得解得C。【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线交于两点,求线段AB的长【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力。满分10分。直线l:代入抛物线方程并整理得交点,,故D。【选修45:不等式选讲】(本小题满分10分)已知x0, y0,证明:(1+x+y2)(1+x2+y)9xy.本小题主要考查算术一几
12、何平均不等式。考查推理论证能力.满分10分。证明:因为x0, y0, 所以1+x+y2,1+x2+y,所以(1+x+y2)(1+x2+y)=9xy。【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。22(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为,随机变量X表示中的最大数,求X的概率分布和数学期望22.【必做题】本小题主要考查排列与组合、离散型随
13、机变量的均值等基础知识,考查运算求解能力。满分10分。(1)一次取2个球共有种可能情况,2个球颜色相同共有种可能情况取出的2个球颜色相同的概率(2)X的所有可能取值为,则X的概率分布列为X234P故X的数学期望23(本小题满分10分)已知函数,设为的导数,(1)求的值;(2)证明:对任意的,等式成立23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力。满分10分。(1)解:由已知,得于是所以故(2)证明:由已知,得等式两边分别对x求导,得,即,类似可得,.下面用数学归纳法证明等式对所有的都成立.(i)当n=1时,由上可知等式成立。(ii)假设当n=k时等式成立, 即.因为,所以.所以当n=k+1时,等式也成立。综合(i),(ii)可知等式对所有的都成立。令,可得().所以()。