文档详情

全等三角形证明经典40题(共20页)

des****85
实名认证
店铺
DOC
207.50KB
约20页
文档ID:221237034
全等三角形证明经典40题(共20页)_第1页
1/20

精选优质文档-----倾情为你奉上1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD的长.ADBC解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中 AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22. 已知:BC=ED,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴ ∠EBF=∠BEF∵ ∠ABC=∠AED∴ ∠ABE=∠AEB∴ AB=AE在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF和三角形AEF全等∴ ∠BAF=∠EAF (∠1=∠2)3. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC4. 已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5. 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180,求证:AE=AD+BE证明: 在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90 ∵EB=EF,CE=CE, ∴△CEB≌△CEF(SAS) ∴∠B=∠CFE ∵∠B+∠D=180,∠CFE+∠CFA=180 ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC ∵AC=AC ∴△ADC≌△AFC(SAS) ∴AD=AF ∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

求证:BC=AB+DC在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180∵∠BFE+∠CFE=180∴∠D=∠CFE又∵∠DCE=∠FCE , CE平分∠BCD ,CE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7.已知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,则:△AED是等腰三角形∴AE=DE而AB=CD∴BE=CE ∴△BEC是等腰三角形∴∠B=∠C.8.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

求证:△AED≌△BFC证明:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS) 17.如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF求证:AM是△ABC的中线证明:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.18.如图:在△ABC中,BA=BC,D是AC的中点求证:BD⊥AC∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90∴BD⊥AC19.AB=AC,DB=DC,F是AD的延长线上的一点求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC20.如图:AB=CD,AE=DF,CE=FB求证:AF=DE∵AB=DCAE=DF,CE=FB CE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE21.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.证明:连接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)∴CF=BE22.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS) 23.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。

DBCcAFE连接BD;∵AB=AD BC=D∴∠ADB=∠ABD ∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DC E\F是中点∴DE=BF;∵AB=AD DE=BF∠ADC=∠ABC∴AE=AF24.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 证明:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC(两角加一边)∵AB=AD,BC=CD在△DEC与△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC(两边夹一角)∴∠DEC=∠BEC25.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.∵AD=DF∴AC=DF∵。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档