文档详情

金融计量-(G)ARCH模型在金融数据中的应用(共17页)

des****85
实名认证
店铺
DOCX
516.68KB
约18页
文档ID:217150798
金融计量-(G)ARCH模型在金融数据中的应用(共17页)_第1页
1/18

精选优质文档-----倾情为你奉上实验报告七 (G)ARCH模型在金融数据中的应用一. 实验目的理解自回归异方差(ARCH)模型的概念及建立的必要性和适用的场合了解(G)ARCH模型的各种不同类型,如GARCH-M模型,EGARCH模型和TARCH模型掌握对(G)ARCH模型的识别、估计及如何运用Eviews软件在实证研究中实现二. 实验步骤(一) 沪深股市收益率的波动性研究1. 描述性统计(1) 数据选取与导入本实验选取中国上海证券市场A股成分指数上证180和深圳证券市场A股成分指数深证300作为研究对象分别从财经网站上下载了2010年5月4号到2016年4月19号这将近6年的上证180和深证300的每日收盘价,共1448个其中,上证180指数的日收盘价以下记为sh,深证300指数的日收盘价以下记为sz将下载的数据导入Eviews2) 生成收益率的数据列在Eviews的命令窗口中输入“genr rh=log(sh/sh(-1))”,生成上证180指数的日收益率序列,记为rh;输入“genr rz=log(sz/sz(-1))”,生成深证300指数的日收益率序列,记为rz3) 观察收益率的描述性统计量利用Eviews作出的沪市收益率rh的描述性统计量如Error! Reference source not found.所示。

图 1 沪市收益率rh的描述性统计量从上图可以看出,样本期内,沪市收益率的均值为0.00395%,标准差为1.6669%,偏度为-0.,左偏峰度为7.,远高于正态分布的峰度值3,说明沪市收益率rh具有尖峰和厚尾特征JB统计量为1231.139,说明在极小水平下,沪市收益率rh显著异于正态分布利用Eviews作出的深市收益率rz的描述性统计量如Error! Reference source not found.所示图 2 深市收益率rz的描述性统计量从上图可以看出,样本期内,深市收益率的均值为0.0128%,标准差为1.7926%,偏度为-0.,左偏峰度为6.,远高于正态分布的峰度值3,说明深市收益率rz也具有尖峰和厚尾特征JB统计量为718.8909,说明在极小水平下,沪市收益率rz也显著异于正态分布而且深市收益率的标准差略大于沪市,说明深市的波动性更大2. 平稳性检验利用Eviews软件对rh和rz进行平稳性检验沪市收益率rh的ADF检验结果如Error! Reference source not found.所示;深市收益率rz的ADF检验结果如Error! Reference source not found.所示。

图 3 rh的ADF检验结果图 4 rz的ADF检验结果从这两个ADF检验结果可以看出,rh和rz的ADF检验值都小于临界值,说明沪市收益率和深市收益率都是平稳的3. 均值方程的确定及残差序列自相关检验通过对收益率的自相关检验,可以发现沪市的收益率与其滞后7阶存在显著的自相关,而深市的收益率也与其滞后7阶存在显著的自相关,因此建立的均值方程如下:rh=c1+β1rh-7+εtrz=c2+β2rz-7+εt(1) 对收益率做自回归利用LS普通最小二乘法对rh和rh(-7)做回归,回归结果如Error! Reference source not found.所示图 5 收益率rh的回归结果忽略常数项的不显著,rh的均值方程估计为rh=0.-0.rh-7再对rz和rz(-7)做回归,回归结果如Error! Reference source not found.所示图 6 收益率rz的回归结果同样忽略常数项的不显著,rz的均值方程估计为rz=0.+0.rz-7(2) 用Ljung-Box Q统计量对均值方程拟合后的残差及残差平方做自相关检验得到rh残差的自相关系数acf和pacf值,如Error! Reference source not found.所示。

图 7 rh残差的自相关系数acf和pacf值偏自相关系数显示rh残差不存在显著的自相关再得到rh残差平方的自相关系数acf和pacf值,如Error! Reference source not found.所示图 8 rh残差平方的自相关系数acf和pacf值偏自相关系数显示rh残差平方存在显著的自相关再做出rz残差和rz残差平方的自相关系数图,如Error! Reference source not found.和Error! Reference source not found.所示图 9 rz残差的自相关系数acf和pacf值图 10 rz残差平方的自相关系数acf和pacf值从图中可以得到与rh类似的结论,即rz的残差不存在显著的自相关,而残差平方存在显著的自相关3) 对残差平方做线性图对rh进行回归后提取残差,生成残差平方序列res1;对rz进行回归后提取残差,生成残差平方序列res2利用软件作出res1和res2的线形图,如Error! Reference source not found.和Error! Reference source not found.所示。

图 11 rh残差平方线性图图 12 rz残差平方线性图由这两个图可以看出,εt2的波动具有明显的时间可变性和集簇性,比如在500和1000附近比较小,也就是说适合用GARCH类模型来建模4) 对残差进行ARCH-LM Test对rh做回归之后的窗口中进行ARCH-LM Test,选择一阶滞后,得到检验结果如Error! Reference source not found.所示同样步骤得到rz的检验结果,如Error! Reference source not found.所示图 13 rh ARCH-LM Test图 14 rz ARCH-LM TestARCH-LM Test 检验的原假设是残差中一直到第q阶都没有ARCH现象在这里q=1.由检验结果可以看出,rh的F检验统计量和LM检验统计量都大于临界值,因此拒绝原假设,认为rh残差中,ARCH效应是显著的对于rz来说也是这样,rz残差中的ARCH效应也显著4. GARCH类模型建模(1) GARCH(1,1)模型估计结果对rh和rz分别进行GARCH(1,1)建模其均值方程形式为r=c+βr-7+εt其中r表示rh和rz都可以。

其条件方差方程为ht=a0+a1εt-12+λ1ht-1利用软件对rh进行估计,估计结果如Error! Reference source not found.所示图 15 rh的GARCH(1,1)模型估计结果由估计结果可以看出,估计的模型为rh=0.+0.rh-7ht=0.+0.εt-12+0.ht-1此外,除常数项外其他各系数全部显著,说明rh序列具有显著的波动集簇性而且ARCH项和GARCH项系数之和为0.986,小于1,也符合理论因此对rh建立的GARCH(1,1)模型是平稳的,其条件方差表现出均值回复,即过去的波动对未来的影响是逐渐衰减的再对rz进行建模,估计结果如Error! Reference source not found.所示图 16 rz的GARCH(1,1)模型估计结果估计的模型为rz=0.+0.rz-7ht=0.+0.εt-12+0.ht-1对rz的GARCH(1,1)模型的估计结果分析与rh类似,除常数项外其他各系数全部显著,说明rz序列具有显著的波动集簇性而且ARCH项和GARCH项系数之和为0.988,小于1,也符合理论因此对rz建立的GARCH(1,1)模型是平稳的,其条件方差表现出均值回复,即过去的波动对未来的影响是逐渐衰减的。

2) GARCH-M(1,1)估计结果对rh进行GARCH-M(1,1)模型估计,在ARCH-M项中选择方差,得到rh的GARCH-M(1,1)模型估计结果如Error! Reference source not found.所示图 17 rh的GARCH-M(1,1)模型估计结果由估计结果可以看出,均值方程中的GARCH项的系数并不显著,说明rh并不适合用GARCH-M模型来进行估计同样步骤得到rz的GARCH-M(1,1)模型估计结果,如Error! Reference source not found.所示图 18 rz的GARCH-M(1,1)模型估计结果rz的GARCH-M(1,1)模型估计结果与rh类似,即均值方程中的GARCH项的系数并不显著,说明rz不适合用GARCH-M模型来进行估计二) 股市收益波动非对称性的研究1. TARCH模型估计结果在Threshold order中填入1,得到rh的TARCH(1,1)模型估计结果如Error! Reference source not found.所示图 19 rh的TARCH(1,1)模型估计结果估计结果显示,RESID(-1)^2*(RESID(-1)<0)的系数估计值小于0,并且不显著,说明在沪市中并不存在收益波动的非对称性。

同样步骤得到rz的TARCH(1,1)模型估计结果如Error! Reference source not found.所示图 20 rz的TARCH(1,1)模型估计结果估计结果显示,RESID(-1)^2*(RESID(-1)<0)的系数估计值大于0,并且显著,说明在深市中存在收益波动的非对称性,即坏消息引起的波动比同等大小的好消息引起的波动要大2. EGARCH模型估计结果对rh进行EGARCH(1,1)估计,其估计结果如Error! Reference source not found.所示图 21 rh的EGARCH(1,1)模型估计结果估计结果中,RESID(-1)/@SQRT(GARCH(-1)) 项的系数C(5)为-0.,但是不能通过显著性检验,说明沪市中不存在收益波动的非对称性同样对rz进行EGARCH(1,1)模型估计,估计结果如Error! Reference source not found.所示图 22 rz的EGARCH(1,1)模型估计结果估计结果中,RESID(-1)/@SQRT(GARCH(-1)) 项的系数C(5)为-0.,并且通过了显著性检验,说明深市中存在收益波动的非对称性,这也与TARCH模型的估计结果相吻合。

三) 沪深股市波动溢出效应的研究股市波动的溢出效应就是指不同资本市场之间波动的传递,接下来进行检验深沪两市之间的波动是否存在溢出效应1. 检验两市波动的因果性(1) 提取条件方差重复前面GARCH-M模型的建模步骤,生成rh回归方程残差项的条件方差数据序列garch01,同样步骤生成rz回归方程残差项的条件方差数据序列garch022) 检验两市波动的因果性同时打开garch01和garch02,进行Granger Causality检验,选择滞后阶数为1,得到的结果如Error! Reference source not found.所示图 23 Granger 因果检验由检验结果可知:对于原假设“深市波动不能导致沪市的波动”,不能通过显著性检验,所以不能拒绝原假设,即深市不是影响沪市波动的原因对于原假设“沪市波动不能导致深市的波动”,通过了显著性检验,所以拒绝原假设,说明沪。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档